30 Nisan 2008 Çarşamba

Matematiksel tanıt

Matematikte tanıt (belgit, ispat), ilgilenilen bir önermenin, belirli aksiyomlar esas alınarak, doğru olduğunu gösterme yöntemidir. Matematiksel tanıtta mantık kullanılır ancak genellikle bir ölçüde doğal dilden de yararlanılır ve dolayısıyla bir parça belirsizlik içerir. Gerçektende matematikte yazılan tanıtların büyük çoğunluğu informel mantığın uygulaması olarak kabul edilebilir. Tamamıyla formel tanıtların ele alındığı tanıtlama teorisi bağlamında, bu tip tamamıyle formel olmayan tanıtlamalara "sosyal tanıtlama" denir. Bu ayrım, günümüz ve geçmiş matematiksel uygulamaların, matematikte yarı görgücülüğün ve matematik folklorünün yoğun olarak incelenmesine yol açmıştır. Matematik felsefesi ise dilin ve mantığın tanıtlardaki rölü ve "dil olarak matematik" ile ilgilidir.

Kişinin formalizme olan yaklaşımından bağımsız olarak, doğru olduğu tanıtlanan sonuca teoremMatematiğin temelleri adı verilen önermeler tanıtlanamayan ya da tanıtlanması gerekmeyen önermelerdir. Bunlar bir zamanlar matematik felsefecilerinin başlıca uğraşı alanıydı. Günümüzde ilgi odağı daha çok matematiksel uygulamalara, yani kabul edilebilir matematiksel tekniklere kaymıştır. denir. Bu teorem, tamamıyla formel olan bir tanıtta son satırda yer alır ve tanıtın tümü, bu teoremin aksiyomlardan nasıl türetildiğini gösterir. Bir teorem tanıtlandıktan sonra başka önermeleri tanıtlamada kullanılabilir.


Bazı kabul görmüş tanıtlama teknikleri:

  • Doğrudan tanıtlama: Sonucun, aksiyomlar, tanımlar ve daha önceki savların mantıksal olarak birleştirilmesiyle elde edildiği yöntem.
  • Tümevarımla tanıtlama: Temel bir durumun tanıtlandığı ve bir tümevarım kuralısonsuz olan) başka durumların tanıtlandığı yöntem. kulanılarak çok sayıda (sıkça
  • Olmayana ergi tanıtı (Reductio ad absurdum olarak da bilinir): Bir özelliğin doğru olması durumunda mantıksal bir çelişkinin doğacağı dolayısıyla özelliğin yanlış olduğunun gösterildiği yöntem.
  • Oluşturarak tanıtlama: İstenen özelliğe sahip somut bir örnek oluşturularak istenen özellikte bir nesnenin var olduğunun gösterildiği yöntem.
  • Tüketerek tanıtlama: Tanıtlanacak önermenin sonlu sayıda duruma bölünerek her birinin ayrı ayrı tanıtlandığı yöntem.

Olasılıkçı tanıtlama, olasılık teorisi yardımıyla istenen özellikte bir örneğin var olduğunun gösterildiği bir tanıtlama olarak anlaşılmalıdır, yani bir teoremin doğru "olabileceği" şeklinde değil. Bu ikinci türdeki uslamlamalara 'usayatkınlık tanıtı' denebilir; Collatz sanısı örneğinde bunun gerçek bir tanıtlamadan ne kadar uzak olduğu aşikardır. Olasılıkçı tanıtlama -oluşturarak tanıtlama dışında- varlık teoremlerini tanıtlamanın birçok yönteminden biridir.

Örneğin "f(X)'i sağlayan en az bir X var" önermesini tanıtlamaya çalışıyorsanız, bir varlık ya da oluşturmacı olmayan tanıt f(X)'i sağlayan bir X olduğunu tanıtlar fakat bu X'in nasıl elde edileceğini göstermez. Buna karşın oluşturmacı bir kanıt X'in nasıl elde edildiğini de gösterir.

Doğru olduğu düşünülen fakat henüz tanıtlanmayan bir önerme sanı (konjektür) olarak bilinir.

Bazı durumlarda, belirli bir önermenin verili bir aksiyomlar kümesinden tanıtlanamayacağı tanıtlanabilir; bkz. örneğin süreklilik hipotezi. Aksiyom sistemlerinin çoğunda, ne tanıtlanabilen ne de tanıtlanamayan önermeler bulunur (bkz. Gödel'in eksiklik kuramı).

Matematik Nasıl Matematik Oldu ?

İki macar soylusu matematik yarışması yapmaya karar verirler. Yarışma kurallarına göre taraflar sırasıyla birer sayı söyleyecekler ve en yüksek sayıyı söyleyen yarışmayı kazanmış sayılacaktır. "Peki" der soylulardan biri "sen başla" . Öteki soylu uzunca bir beyinsel çalışmadan sonra ürününü ortaya koyar "üç !". Sıra birinci soyludadır. Onbeş dakika kadar kendisinden ses çıkmaz. Ama yüz ifadesinden bütün benliği ile düşünmekte olduğu bellidir. Nihayet acı gerçeği teslim etmek zorunda kalır : "sen kazandın".

Şimdi çoğunuz bu yazıyı okuduktan sonra garip şeyler düşünebilirsiniz :). "Soylu moylu bir insan bu kadar da ebleh olamaz".Neden ? Çünkü aşağı yukarı 5000 yıldır insanoğlu(soylular dahil) üçten yukarı saymasını biliyor.

Bugün insanoğlu yalnızca sayı saymasını bilmiyor. Geometri, cebir biliyor. Sonsuz küçüklerle uğraşıyor ve türev alıyor, tümlev alıyor. Türevsel denklem çözüyor. Olasılık kuramıyla, çizge kuramıyla, topolojiyle uğraşıyor.

Matematik dediğimiz bu uçsuz bucaksız bilgi denizini nasıl yarattı insanoğlu ? Bir görüşe göre içinde bulunduğu toplumun "üstünde" yaşayan matematikçilerin eliyle. Buna göre matematikçiler etkinliklerini içinde yaşadıkları toplumdan bağımsız olarak sürdürürler. Ama doğal olarak ortaya konan ürün teknolojiyi etkilediği için matematik toplumsal değişmede etkidi olur. Matematikçiler bu etkinlikleri süresince kendilerine hoş gelen ya da uygun gördükleri kavramlar, soyut varlıkları - biraz da keyfi biçimde- yaratırlar ve bundan sonra herşey mekanik bir mantıksal kıyas yöntemiyle önermeler zinciri halinde büyür, gelişir. Matematikçinin bu somut gerçeklikten uzaklığı, doğal ki onun ortaya işe yarar bir ürün koymasına engel değildir. Hatta çoğu kez bu ürün çok çeşitli uygulama alanları bulur. Böylece matematikçi içinde bulunduğu toplumu etkiler, ama metametik salt matematikçinin ürünüdür. Böylece döner, dolaşır toplumun gelişmesindeki itici gücün toplumdaki deha sahibi bilge kişiler olduğu sonucuna varırız.

Bu görüş gerçekliğin üstünkörü bir biçimde yorumlanmasından kaynaklanır. Matematikçiyi toplumdan soyutlayıp fildişi kuleye hapseder ve matematiksel gelişmenin matematikçinin iradesiyle kendiliğinden olduğunu varsayar. Oysa matematikçi ile içinde yaşadığı toplum ayrılmaz bir bütün oluşturur. Bu bütünlüğü gördüğümüz zaman ancak, nasıl olupo da toplumun teknolojik gereksinimlerini karşılayabilmek için matematiğin yavaş yavaş ama emin adımlarla bugünkü durumuna geldiğini anlayabiliriz.

Matematik yaşamın nesnel koşulları, onun varlığını gerektirince dünyaya geldi. İlk matematikçi belkide sürüsündeki hayvanları saymaya çabalayan bir çobandı ?

Tarımla uğraşan toplumların en ilkeli bile mevsimlerle ilgili sayısal bilgiye gereksinim duyar. Bu ise takvim yapma ile ilgili sorunların çözümünü gerektirir. İlkel toplumların hemen hepsinin takvim tutma, dolayısıyla astronomiyle ilgilendiklerini biliyoruz.

Fenikeliler gibi tüccar gemici toplumların ekonomilerinin bir muhasebe sistemine, mirası bölüşme kurallarına, denizcilik sanatına, kısacası aritmetik,geometri, astronomiye olan gereksinimleri tartışma götürmez. Bu gelişme ticarete dayanan her uygarlıkta yer alır. Babil'de ve eski Mısır'da aritmetik ve gometrinin, Hindistan'da da cebirin başlaması işte bu gelişme sonucudur. Eski Mısır'da Nil taşkınlarından sonra toprak sınırlarının yeniden saptanması sorunu da geometrinin Mısır'a özgü itici öğelerinden biriydi.

Toplumsal yaşamın gerektirdiği matematiksel gelişme belli bir düzeye eriştikten sonra matematik artık yalnızca uzmanların anladıgığı bir meta haline geldi. Toplumun egemenlerinin bir araya getirdiği ve beslediği bu uzmanlar toplumda bir kast oluşturdular. "Gizli Şeyler"i elinde tutan bu insanlar tekellerindeki bu bilgi birikimi dolayısıyla toplumda büyük güç kazandılar.

Şimdi buraya "gizli şeyleri" ellerinde tutan bu insanları yazımın başında sözünü ettiğim "toplumun üstünde yaşayan matematikçi" kavramı ile karıştırmamak gerek. Tam tersine bu kişiler "gizli şeyleri" ile toplumun gereksinme duyduğu işlevleri yerine getirdikleri için güçlüydüler. Örneğin Mısır'da zamanı kahimler ölçerdi. Zaman gündüzleri güneşi, geceleri de yıldızları gözleyerek ölçülürdü. Nil taşkınlarının ne zaman olacağınıda belirlerdi kahinler. Gene "gizli şeyşerin" içinde dairenin, çokgenlerin alanlarının, basit bazı cisimlerin hacimlerinin nasıl bulunacağı da vardı.Örneğin üstü kesik bir pramitin hacmini bulabiliyordu kahinler.

Ancak gene de matematiğin bu yalnızca uzmanlarca bilinir olma niteliği sayı ve şekil konusunda belli bir gizemcilik de yaratmadı değil. Özellikle pisagorcu gizemciliğin Yunan bilim ve Felsefesi üzerindeki etkisi dikkati çeker.

Yunan toplumu üretimde kölelerin kullanıldığı, bu nedenle de üretimi artırmak için teknolojik gelişmeye pek gereksinme duymayan bir toplumdu. Bu durum toplumun egemenlerinin somut gerçeklikten uzaklaşmalarına yol açmıştı. Bu toplumsal yapı Yunan matematiğine gerçekten özgün bir nitelik kazandırmıştı: Uygulamayı hor görmek. Yunanlıya göre bir ürün uygulanabiliyorsa matematik olmazdı. Olsa olsa zanaat olabilirdi. Bunun sonucu Yunanlu nesnel gerçeklikten kaçar, onu yadsır oldu.

Yunan toplumunun bu yapısı Yunanlıların soyutlama ve akıl yürütme de gösterdikleri ilerlemenin nesnel tabanını oluşturur. Aynı zamanda bu yapının Yunanlaıların salt akıl yürütmekle gerçeğe ulaşabilceğine olan inançlarını doğurduğunu söylemek de yanlış olmaz. Bu nedenle yunan toplumu matematiğe modern anlamda kanıtlama tekniği kazandıran ilk toplumdur. Matematiği ilerletmek için yalnızca akıl yürütmeye dayanan Yunanlılar, geliştirdikleri kanıtlama yönemiyle, matematiğin daha sonraki dönemlerdeki gelişmesinde birincil etken olmuşlardır.

Yunanlı geometricilerin bu yolla elde ettikleri eşsiz başarı Yunanlıların nesnel gerçeklikten büsbütün uzaklaşmalarına yol açar. Örneğin Pisagorculara göre ,gerçek,güzellik ve iyi bir bütün halinde "sonluda" ve " duranda" aranmalıdır. Bu eğilim yunanlı geometrcilerin akıl yürütmelerindeki durağanlığı ve hareketsizliği açıklar. Örneğin Zeno, çok yaygın bilinen bir örnekte, bir noktadan atılan bir okun, izlediği her noktada duruyor olması gerektiğinden, hiç bir zaman hedefe ulaşamayacağını savunur;yani hareketi yadsır. Hatta öklid bile çemberi, bir noktadan eşit uzaklıkta hareket eden noktanın çizdiği eğri(yer eğrisi) olarak tanımlamaz da, hareket kavramını harekat kavramını gerektirmeyen bir tanım verir. Çember Yunanlıya göre düşünsel bir olarak hep vardır çünkü.

Öte yandan Hindistan'da tüccar bir toplum görüyoruz. Bu toplumsal yapının sonucu Hindular ticaret için gerekli aritmetiği ve toprak ölçmek için gerekli olan geometriyi geliştirmişlerdi. Hindular matematiğe Yunanlılardan çok farklı bir biçimde yaklaşıyorlardı : Matematik onlar için yaşamı kolaylaştıran bir araçtan başka bişey değildi. Bu nedenle Hindular matematiğin "teorik" yanı üzerinde pek durmadılar; Kanıtlara göre uzun boylu uğraşmadılar. Sayılara ne taptılar nede sayılardan korktular: İrrasyonel sayı herhangi bir sayı idi onlar için.

Ticaret kullanışlı bir sayı sistemi gerektiriyordu. Bugün bildiğimiz sayı sistemini geliştirdiler, sıfır kavramını icad ettiler.Dolayısı ile analiz ve cebiri geliştirdiler. Bu kavramlar daha sonra Araplar aracılığıyla batıya tanıtıldı ve özellikle 13.yy İtalyasında büyük ilgi gördü. Buradan da Avrupa'ya yayıldı.

Bu kısa yazıda toplum yapısının matematiği nasıl biçimlendirdiğini anlatmaya çalıştım. Göstermeye çalıştım ki, matematik bir toplumun üretim ilişkilerinin işlevidir. Matematiğin gelişmesinin özellikleri toplumun gelişmesinin özellikleriyle belirlenir.

Hayatın Matematik Lisanı

* Matematikî lisan riyazî düşünce, içinde yaşadığımız kâinatı ve onun işleyişini anlamada neden önemlidir?
* Milenyum problemleri nelerdir ve bunlarla ilgili ilim adamlarından ne tür çözümler beklenmektedir?
* Günümüz dünyasında metafizik matematik nasıl bir hayati role sahiptir?
* İcatlarla, savunma sanayi ve uzay çalışmaları arasındaki münasebet…
* Kâinat kitabını okumada matematiğin rolü…

Merak ve akıl gibi lâtifelerle donatılan insanoğlu, içinde bulunduğu kâinatın sırlarını keşfetmek adına, büyük teleskoplar inşa ediyor, Güneş Sistemi'ndeki gezegenlere uzay araçları gönderiyor. Artık, bir uzay aracının bir gezegen etrafında dönmesi ve uzaklardaki gök cisimlerinin keşfedilmesi normal karşılanmaya başlandı. Hayatımızı kolaylaştıran duman algılayıcı, tv uydu anteni, barkod, tıbbî tarama cihazı ve göz tarama sistemi gibi birçok âletin, savunma sanayii ve uzay çalışmaları sırasında icat edildiğini biliyor musunuz? Hasta olduğumuzda tıbbî tetkikler için kullanılan röntgen cihazı, manyetik rezonans (MR) ve bilgisayarlı tomografi (BT) gibi birçok aletin de benzer süreçlerle icat edildiğini hiç düşündünüz mü? Bütün bunlar bir yandan modern hayatın, bilim ve teknolojiye ne kadar bağlı hâle geldiğini gösterirken, diğer yandan da kâinattaki eşya ve kanunların insanın emrine musahhar olacak şekilde yaratıldığını göstermektedir.

Modern ilmî metodolojinin benimsediği araştırma usûlüne göre matematik; ilmî tespitler için "objektif" bir usûl olmasının yanında, elde edilen neticelerin umumîleştirilmesinde de en objektif vasıtadır. Bilim ve teknolojnin arka plânında Kudret-i Sonsuz'un ilminin bir ifadesi sayılan ve çoğunlukla gözden kaçırılan matematik vardır. Orta Çağ'da Müslüman ilim adamlarının fark ettiği bu riyazî düşünce ve matematiğe ait hususiyetler Gazzalî'den Birûnî'ye, Nasiruddin Tûsî'den Hucendî'ye ve Harizmî'ye kadar yüzlerce ilim adamının eserinde vurgulanmıştır. İslâm âlimlerinin yolunda yürüyen ve modern bilimin öncülerinden sayılan Galileo, 1623'te basılan ikinci kitabı Saggiatore'de şöyle yazmıştı: "Öncelikle kâinattaki geçerli dil öğrenilmedikçe ve sonra da onda yazılı karakterler okunmadıkça kâinat anlaşılamaz. Kâinat, matematik dilinde yazılmıştır ve insan olarak onda yazılan kelimeleri matematik olmaksızın anlamamız imkansızdır." Galileo'nun bu sözü, önemli bir hakikate işaret etmekle birlikte; kâinattaki nizam ve cereyan eden hâdiseler çok kompleks olduğundan, bugüne kadar geliştirilen matematikle son derece girift olan bu mükemmelliği kısmen açıklasak bile, bütün kâinatı ifade edebilen matematik sistem ve formülleri anlamada henüz yetersiz kaldığımız görülmektedir. Bilim tarihine bakıldığında; kâinatın varlık yapısı ve işleyiş özellikleri, matematik kullanılarak kısmen ifade edilebilmiştir. Bu kısmî anlaşılma kâinattaki her şeyin bir matematikî açıklaması olduğunu veya matematikle çelişmediğini gösterirken, varlığın izahında mevcut matematik bilgilerinin yetersiz kalan bir boyutunun olduğunu da göstermektedir. Fizikçiler, maddenin yapısını ve tabiattaki kuvvetleri açıklayan denklemler yazarlar. Sun'î kalb tasarlayan bir mühendis, kanın damarlarda nasıl aktığını ifade eden denklemleri dikkate alır. NASA'daki bir astronom, bir uydunun veya uzay gemisinin yörüngesini ifade eden denklemleri kullanır. Modern dünyada matematiğin bu hayâtî rolü, hayırsever milyoner Landon Clay'ın Milenyum (Bin yıl) Ödül Problemlerini niçin inşâ ettirip, çözümlerini yapacak olanlara yedi milyon dolar vermeyi vaat ettiğinin temel sebeplerinden biridir. Clay Matematik Enstitüsü'nün kurucusu da olan bu hayırsever, matematikteki en önemli ve çözümü şu ana kadar yapılamayan yedi problemin her birini ilk çözen kişiye, bir milyon dolar ödül sözü vermiştir. Ne var ki; pozitivist ve materyalist ilim anlayışı neticesi bütün bütün maddîleşen bugünün insanı, ilim ve tekniğe sadece şahsî hazları, maddî refah ve rahatı açısından alâka duymaktadır. Bu inkârcı düşünce devam ederse; "yeni bakış ve tespitler insanlığın kurtuluşu adına birtakım sihirli reçeteler takdim etseler bile, dünya çapındaki umûmî yozlaşmanın önü alınamayacaktır."

Milenyum problemlerinden birkaçı sizden bir denklemin çözülmesini istemesine rağmen, bu teorik problemlerin hiçbirinde bir sayı değeri bulmanız istenmez. Bu yüzden derslerin hayattan kopuk olarak verildiği öğrencilik yıllarımızdaki matematiğin can sıkıcılığı hâlâ hatırımızdadır. Fakat sembollerin ve denklemin ne mânâya geldiği anlaşıldıktan ve sayılar kullanılarak hesap ortaya çıkarıldıktan sonra, matematik zevkli gelmeye başlar. Bu yüzden asıl başarı, doğru denklemin yazılması sürecinde çekilen sıkıntılarda gizlidir. Özel problemleri çözmek için geliştirilen bir denklem, bir uzay aracı inşâ etmek veya kalb-akciğer makinesi tasarlamak gibi özel maksatlar için kullanılarak, icat şeklinde kendini gösterir. "Kur'ân, peygamberlerin mucizelerini zikretmesiyle beşeri, istikbalde o mûcizelerin benzerlerinin terakkî ile vücûda geleceğini beşere ders verip teşvik ediyor ve diyor ki; haydi çalış, bu mucizelerin numûnelerini göster. Süleyman (as) gibi iki aylık yolu bir günde git. İsa (as) gibi en dehşetli hastalığın tedâvisine çalış... İşte buna kıyâsen Kur'ân, her cihetle maddî mânevî terakkiyâta sevk etmek için ders veriyor." Ancak mucizelerin benzerlerinin inşâ edilmesi için, öncelikle bunlara ait doğru matematik denklemlerin yazılması veya önceden yazılmış denklemlerden hangisinin bu özel hazırlanmış probleme uygun olduğunun belirlenmesi gerekmektedir. Çözüm daha sonraki bir iştir; bir denklem tam olarak çözülemiyorsa, bile muhakkak yaklaşık çözüm mevcuttur ve bu tür çözümler çoğunlukla işimizi görmektedir.

Milenyum problemlerinden iki tanesinde denklemler fiziktendir. Bunlardan birincisi, akışkanlara ait Navier-Stokes denklemlerine genel bir çözüm bulunmasıdır. Bu denklemler ilk olarak 1820'lerde formüle edilmiştir ve bir kayık gövdesi etrafındaki suda, bir uçağın kanadı üzerindeki havada veya kalbden pompalanan kanda olduğu gibi akışkan ve gazların hareketini ifade eder. Navier-Stokes denklemleri, fen ve mühendislik alanındaki üniversite öğrencilerinin denklem türlerine benzer. Fakat bu durumda, görünüş aldatıcıdır. Şimdiye kadar hiç kimse, bu denklemlerin çözüldüğü genel bir formülün nasıl bulunacağına dâir bir ip ucuna sahip değildir. Fakat denklemlerin kendileri, söz konusu problemin anlaşılmasını sağlar. Bu denklemlerin çözüldüğü genel bir formülün olmayışı; gemi mühendislerinin daha iyi gemiler tasarlamasına, uçak mühendislerinin daha iyi uçaklar inşâ etmesine veya tıbbî cihaz yapan mühendislerin sun'î organlar geliştirmesine engel teşkil etmez.

Diğer bir milenyum problemi, 1954'te Chen-ning Yang ve Robert Mills tarafından formüle edilen ve maddenin derinlemesine tabiatını tasvir eden bir denklem kümesine çözüm bulmak işidir. Bu denklemler, bizlerin ve kâinattaki her şeyin yapılmış olduğu ham maddenin zengin bir tarifini verir. Bugüne kadar henüz bu denklemlerden herhangi biri çözülememiştir. Navier-Stokes denklemleri gibi; bilgisayar kullanılıp yaklaşık olarak çözülebilen Yang-Mills denklemlerine dayanarak fizikçiler lâboratuvarda test edilmiş olan hesaplar yapabilmiş ve son derece hassas neticeler elde etmişlerdir. Bir ölçüm sırasında denklemler "doğru" olmak zorundadır. Bu tür denklemler, fizikçilerin ihtiyacı olan hemen hemen bütün bilgiyi sağlamaktadır. Henüz hiç kimse, alışılmış matematik metotlarıyla Yang-Mills denklemlerini çözebilmiş değildir. Asıl olan denklemleri çözmek değil, denklemlerin neyi ifade ettiğini anlamaktır. Sayıları kullanmak ve bu denklemlere dayanarak hesaplama yapmak, önemli olmasına rağmen, ikinci plânda kalmaktadır.

Matematik evrensel bir dildir. Bu dili üreten düşünceye de riyazî düşünce denir. Yeryüzü mirasçılarının bir vasfı olan bu düşünce, M. Fethullah Gülen Hocaefendi'nin 'Ruhumuzun Heykelini Dikerken' isimli eserinde aşağıdaki şekilde özetlenmektedir: "Bir dönemde Asya'daki ilkler daha sonra da Batı, Rönesansını riyazî kanunlarla düşünme sayesinde gerçekleştirdi. İnsanlık, tarihi boyu pek çok belirsiz ve karanlık şeyleri sayıların sırlı dünyasında keşfedip ortaya çıkarmıştır. Hurûfilerin ifratkâr davranışları bir yana, matematik olmayınca ne eşyanın, ne de insanın birbirleriyle münasebetlerini anlamak mümkündür. O, kâinâttan hayata uzanan çizgide bir ışık kaynağı gibi yollarımızı aydınlatır, bize insan ufkunun ötelerini, hatta düşünülmesi taşınılması çok zor imkân âleminin derinliklerini gösterir ve bizi ideallerimizle buluşturur.

Ne var ki, riyazî olmak, matematikle alâkalı şeyleri bilmek değildir; matematiği kanunlarıyla düşünmek, insan düşüncesinden varlığın derinliklerine uzayan yolda sürekli onunla beraber olmaktır. Fizikten metafiziğe, maddeden enerjiye, cesetten ruha, hukuktan tasavvufa hep onunla beraber olmak. Evet, varlığı tam kavrayabilmek için hem tasavvufî düşünce, hem ilmî araştırma çifte usûlunü kabul etme mecburiyetindeyiz. Batı temelde kendinde olmayan bir cevherin yerini doldurmada oldukça zorluk çekmiş ve bu ihtiyacı bir ölçüde mistisizme sığınarak karşılamaya çalışmıştı.. her zaman İslâm ruhuyla içli-dışlı olmuş bizim dünyamız için, yabancı herhangi bir şey aramaya veya herhangi bir şeye sığınmaya ihtiyaç yoktur. Bizim bütün güç kaynaklarımız düşünce ve iman sistemimizin içinde vardır; elverir ki o kaynağı ve o rûhu ilk zenginliğiyle kavrayabilelim.. o zaman, varlık içindeki bir kısım sırlı münasebetleri ve bu münasebetlerin ahenkli cereyanını görecek ve her şeyi daha bir değişik temâşâ ve zevk irfânına ulaşacağız."


Kısaca, matematikî lisan ve riyazî düşünce, içinde yaşadığımız kâinatı ve onun işleyiş prensiplerini anlamak ve tasvir etmek için ihtiyacımız olan bir dildir. Böyle bir vasıta, insanın gözünden perdeyi kaldırıp ona gerçeği gösterdiği ve onu yeni tefekkür ufuklarına doğru yelken açtırdığı ölçüde vazifesini edâ etmiş olacaktır. Kafa ve kalb bütünlüğüne ulaşmış ilim adamları, eşya ve hâdiselerin içine girerek ilmi ve ilmin semerelerini, insanlık yararına kullandıkları sürece bu işin hakkı da verilmiş olacaktır.

Doç.Dr. Ufuk İLYASOĞLU
Kaynak: Sızıntı Dergisi

Bir Kültür Olarak Matematik

Dünyada birçok insan matematikle olan dargın ilişkisinden şikayet eder. Birçoğumuz bunu bir eksiklik olarak ifade etmekten hiç çekinmez . Aksine, matematikteki eksikliğini neredeyse övünerek dile getirir. Matematiği gözümüzde öylesine büyütmüşüz ki, böyle bir `ihtişam` karşısında yetersiz kalmak bir özellik olarak algılanıyor. Otoriteye biat etmek sahnesi... Matematiği yalnızca bir araç olarak gören ve toplumsal devinimden bağımsız algılayan bir paradigmada, matematiğin ideolojik boyutunu da gündeme taşımış oluyoruz böylece.

Her bilgi dalı gibi matematik de bir kültür olarak yaşamını sürdürür. Son zamanlarda yapılan kazılarda 30000-40000 yıl öncesine varan bulgulara rastlanmaktadır. Çeşitli kemikler ve taşlar üzerindeki işaretlerden daha o zamanlar insanların yaşamlarını ölçüp biçtiğini, hesap kitap yaptığını öğreniyoruz.

Gereksinmelerin giderilmesi, yaşamın örgütlenmesi için üzerinde yaşanan topraklar ölçülmüş, bölümlen-miş, hayvanlar sayılmış, gruplara ayrılmıştır. Evreni anlamak yolunda uzay tasavvur edilmiş, evrende görülenler benzetilerek geometrik şekil ve cisimlere vardırılmıştır. Giderek sayı dizgeleri farklılaşmış, çeşitli tabanda sayı sistemleri ortaya çıkmıştır. Bir taraftan insanların merak duyguları, yaratıcı yetileri, diğer yandan ihtiyaçların itici gücü ile matematik yaşamın kaçınılmaz bir parçası olmuştur. Doğa bilimleri büyük bir hızla evrilirken matematiği tetiklemiş, matematik de fiziksel araştırmaların motor gücü olmuştur.

Bu sürece sayısız örnek katmak olasıdır. Ancak temel sorun, böylesine insana has bir özelliğin, birçok kişinin başına nasıl dert olup çıktığıdır. Descar-tes `tan başlayan çözümleyici bakış açısı, Newton ve Leibniz ile doğanın devinimini anlamlandırma gayretlerinde doruğa ulaşmıştı. Matematik o güne kadar fizikle bu denli iç içe olmamıştı. Sonlu küçük matematikle fiziksel olguların değişim süreçlerine el atılmış, doğal süreçlerin modellenmesi ile mekanik biliminin temelleri atılmıştı. Bunun anlamı şuydu: Doğa olayları artık tasarlanabilir ve benzetilebilirdi. Böylece, matematik belirli bir dizge çerçevesinde düzenlenmeye başladı. Gelişen sanayi ölçütlerine göre insan yetiştirebilecek okullar ortaya çıkmaya başladı. Bu okullar, günün koşullarına ve gereksinmelerine göre içerik kazandı. Geometri cebirselleşti. Matematiği daha rahat kullanmanın ve buna göre bir öğretim çatısını kurmanın yoğun uğraşı gündeme geldi. Matematiğin bu yeni sistematik yapısı yeni kuşaklara aktarıldı.

Kültürel bir olgu olan matematik bu süreçte doğa bilimlerinin evriminde o denli etkili oldu ki, `bilimlerin kralı/kraliçesi ` önermesiyle taçlandırıldı. Matematik bir `zeka ölçütü` olarak öne çıktı. Matematik bir otorite olarak örgütlenince, insan türünün çokluk, uzam , renk gibi doğal zihinsel yetileri şeyleşti. Yalın bir doğallık olan parmakla hesap yapmak gibi edimler aşağılandı. İnsanlar baş tacı edilen bu `matematik anlayışı` süzgecinden geçirilerek sınıflandırıldılar. Herkesin kendine özgü matematiksel nitelikleri , kabul gören ölçütlere karşı yenik düştü. Matematiğe yabancılaşıldı. Böylece, matematik kaygısı toplumsal bir nitelik kazandı.
Matematik , bir kültür olarak insani bir üründür, bir eserdir. Tarihsel devinimde bir evrim yaşamıştır ve yaşamaktadır. Hüküm süren kapitalist/tek-nolojist paradigma pozitivist ideoloji kapsamında matematiği tarihsiz kılar. Matematiğin evrenselliğine ilişkin inancı önemli ölçüde pekiştirir. Araçsal-laştırır. Böylece matematik üzerinden bir iktidar kurar. Matematik bir otorite olarak seçkinci bir çizgi izler. Matematik , modern bilimin anahtar girdisidir ve teknolojinin kaçınılmaz bir hammaddesidir. Buna göre, çokluk, uzam , renk, değişim, biçim gibi boyutlar insan zihninin doğal nitelikleriyken şeyleşir, metalaşır ve insana yabancılaşır... Bunun bir uzantısı olan matematik kaygısını incelemeyi sürdüreceğiz.

BENO KURYEL (Ege Ü . Müh. F. bkuryel@ttnet .net .tr)

Taşlardaki Geometri

Mineraller, belli kimyevi terkibi ve muntazam atomik yapısı olan homojen ve ekseriyetle katı cisimlerdir. Canlı organizmadaki hücre gibi, tabiatta mineral, en küçük yapıyı meydana getirir. Mineraller yan yana gelerek kayaları, kayalar dağlan, dağlar da kıtaları teşkil ederler. Tabiatta 2000 çeşit mineral bilinmektedir. Ancak bunlardan çok azı kayaç yapısında bulunmakta (12–15), bir kısmı maden yataklarını meydana getirirken, büyük kısmı arz kabuğunda ve manto İçinde dağılmış durumdadır.
Mineraller, bazan yalnız bir metalden meydana gelmiş olabilirler. Altın (Au), bakır (Cu), arsenik (As) gibi. Fakat bunların büyük bir kısmı basit gördüğümüz elementlerin birleşmesiyle ortaya çıkarlar. Kuvars (SiO2), kayatuzu (NaCl), pirit (FeS2) gibi.

Endüstride kullanılan ve ekonomik değere haiz olan minerallere cevher mineralleri denir. Krom cevheri, kalay cevheri gibi.

Minerallerden civa ve su gibi bir kaçı sıvı halde, silis camı ve opal gibi bazıları amorf (şekilsiz), büyük çoğunluğu ise kristal şeklindedir.

Kristaller, düzgün satıhlarla çevrilmiş geometrik şekillere ve muntazam peryodik olarak sıralanmış düzenli atomik yapılara (strüktürlere) sahiptirler. Asıl hususiyetleri, intizamlı bir iç yapı göstermeleridir.

Her kristal gibi Kuvars kristali de bazen çok güç, bazen de bir insan büyüklüğünde 300–400 kg. ağırlığında olabilir. Kristallerin bu şekilde açıları değişmeksizin büyüyüp küçülmesi oldukça düşündürücü bir husustur. Gerek makro gerek mikro ve gerekse de normo âlem dikkatle incelendiğinde bir kudret ve hikmet elinin Her kristal gibi Kuvars kristali de bazen çok güç, bazen de bir insan büyüklüğünde 300–400 kg. ağırlığında olabilir. Kristallerin bu şekilde açıları değişmeksizin büyüyüp küçülmesi oldukça düşündürücü bir husustur. varlığı hemen anlaşılmaktadır. Taş misâli cansız ve basit gibi görünen daha nice varlık “detaylı” olarak incelendiğinde bu Yüce Elin, varlıkları belli ölçülerle bir gergef gibi işlediği güzler önüne serilmektedir. Alelâde çizimi bile teknik ressamları günlerce uğraştıran atomik yapısıyla akıllara durgunluk veren bu muazzam şekiller, bir tesadüf mahsulü olmadıklarını düşünen kafalara haykırmaktadırlar.

Kristallerin dış, şekillerini meydana getiren satıhlar, rastgele yanyana dizilmiş şeyler değillerdir. Bunların sıralanışı, birbirleriyle olan, münasebetleri ve kristal eksenleri ile olan bağlantıları, mineralin atomik yapısına uygun bir şekilde, belirli prensip ve kanunlara göre gerçekleşir. Bunlardan birisi “Açıların Sabitliği Kanunu” dur. Kristallerde yüzler arasındaki açılar daima sabittir. Bir kristalin belirli bir büyüklüğü yoktur. Çünkü soğuma hâdisesi ne kadar yavaş olursa kristaller de o nisbette büyük olur. Meselâ kuvars kristali, bazan çok küçük olabileceği gibi, bazan da Tirol, Sen Gotar ve Madagaskar’da bulunan misâller gibi bir insan büyüklüğünde ve 300–400 kg ağırlığında olabilir. Kristallerin bu şekilde büyümeleri, yavaş soğuma neticesi olarak satıhların üzerine kristali teşkil eden maddeden, paralel birçok tabakanın ilâvesinden ileri gelir. Bu durum bir duvarcının tuğlalarla duvar inşa etmesine benzetilebilir. Binaenaleyh, aynı mineralin kristalleri arasında, büyüklük ve görünüş bakımından fark bulunabildiği halde, satıhların meydana getirdiği açılar tamamen birbirinin aynısıdır. Bu Çin’de de aynıdır. Ay’da da aynıdır. Afrika’da da aynıdır.
İlk defa 1783 senesinde Rome de Lisle tarafından ortaya atılan bu kanun asırlarca önce, herşeyin bir mizanla meydana getirildiğini, bütün varlıkların hesaplı olarak yaratıldığını beyan eden büyük Kâinat Kitabı’nda ortaya konulmuştu (Rahman/7). Bir kristal sathının, kristal içindeki durumu, onun kristal desenleriyle olan bağlantısı ile belirlenir. Eksenleri kesen bir sathın onlar üzerinde ayırmış olduğu birim uzunluklara parametre ve bunlar arasındaki nisbete de “Parametre nisbeti” denir. Bu nisbet herbir kristal için sabittir. Bu da kristalin en esaslı hususiyetlerindendir. Gâyesiz ve plânsız yaratılan hiç bir canlı olmadığı gibi, cansız bir mineralin dahi ölçüsüz olmadığını, yaratıkların sahibini görmeyip onların var oluşunu tesadüflere vermenin ne kadar ilim dışı bir anlayış olduğunu, ilmi tesbitler açık bir şekilde İnsanlığın gözleri önüne sermektedir. (ALINTI)

Matematiğin Temel İlkeleri

Her kelimeyi tanımlamak mümkün olmadığı gibi, her hükmü de ispat etmek mümkün değildir. Bir kelime, başka kelimelerle tanımlanır, bu sonuncular da, daha başka kelimelerle tanımlanır. Böylece kullanılan her kelimeyi tanımlamak için, sonsuz şekilde geriye gitmek gerekmektedir ki, bunun imkansız olduğu ortaya çıkar. Bunun gibi; matematikte, bir teorem, başka teoremlerle, o teoremler de başkalarıyla İspat edilir. Her şeyi ispat için, imkansız olan, bir sonsuz geriye gitme lazım geldiğinden, ister istemez bir yerde durmak icap ediyor. Şu halde, nasıl ki, tanımlanamayan şeyler varsa, öylece ispat edilmeyen şeyler de vardır. İspat edilemeyen bu şeylere, matematikte prensipler adı verilir. Gerçi, prensipler ispat edilemezler, fakat her şey bunlara dayanarak ispat edilir. Bunların ispatsız kabul edilmelerinin sebebi budur.

Matematiğe ait, sistematik eserler meydana getiren Eski Yunan (Grek) matematikçileri, bazı hükümleri ispatsız kabul etmek lazım geldiğinin farkına varmışlardır. Bunlardan Öklid, Elementler adlı eserinin başında, bu gibi hükümleri ifade etmiştir. Bunlara da, <> adını vermiştir. Zamanla, bu kabulü istenen şeylerin sayısı değişmiştir. Örneğin, 19. yüzyıla kadar, matematikçiler, Öklid'in ispatsız kabul ettiği ve Öklid Postülatı denilen <> şeklindeki hükmünü ispat etmeye çalışmışlardır. Fakat, daima ispatsız birtakım hükümler, yeni yeni prensipler kabul edilmiştir.

Eskiden beri, matematikçiler tarafından, matematiğin temel prensipleri üç grupta toplanmıştır. Bunlar:

A) Tanımlar
B) Aksiyonlar
C) Postülatlar


Bu üç temel prensibe ait ilginç örnekler ve geniş bilgileri, herhangi tir matematik kitabında görmek mümkündür.
alıntı

Matematiksel Sonsuzluk

Öncelikle fiziksel dünyada sonsuz diye bir şey yoktur. Eğer bir aritmetik işlem sonucunda sonsuz elde ediyorsanız, o işlemin bir aşamasında gerçek dünyada olmayan bir varsayımı işin içine girmiş demektir (ya da bir yerlerde hata yapılmıştır). Matematikçiler bu tip durumlarda varsayımların dikkatli bir şekilde tanımlandığı “limit” hesabını geliştirmiş. Sonsuz eksi sonsuz tipi ifadeler de bu türden: Her iki sonsuzun nasıl elde edildiği incelenmeli, işlem daha dikkatli bir şekilde yapılarak sonuç bulunmalı. Çıkan sonuç da herhangi bir sayı, hatta sonsuz bile olabilir.

Sonsuz kavramı, matematikte değişik yerlerde değişik anlamlarda kullanılıyor. Ama, aritmetikte sonsuzu diğer sayıların arasına uyumlu bir şekilde katmanın imkanı yok. Burada uyumluluktan kastım dört işlemin doğal gördüğümüz temel özelliklerinin sağlanması. Örneğin, (a+b)+c=a+(b+c) gibi, ya da a+b=c ise a=c-b gibi. Sonsuzu bu dört işleme sokmaya çalıştığımız zaman bu özelliklerden bazıları sağlanmıyor. Eğer sonsuz+1=sonsuz ediyor ve aynı zamanda sonsuz+2=sonsuz ediyorsa, sonsuz-sonsuz hem 1 hem de 2’ye, hem de dediğin gibi 0’a eşit olmalı. Bu da oldukça anlamsız bir şey: Her aritmetik işlemin tek bir sonucu vardır. Bu nedenle, sonsuz’u dört işleme girebilen bir sayı olmaktan çok, bir büyüklük fikrini anlatan bir kavram olarak düşünmek daha doğru olur.

Günlük Hayatta Matematik

Matematik günlük hayatta ne ise yarar!?
ÖSS’de her yıl 5-10 bin öğrencinin matematikten sıfır ve altında puan almasının sebeplerini, 70 ilde 17 bin 500 öğrenci üzerinde yapılan dev anket çalışması ortaya koydu.

ÖSS’de her yıl 5-10 bin öğrencinin matematikten sıfır ve altında puan almasının sebeplerini, 70 ilde 17 bin 500 öğrenci üzerinde yapılan dev anket çalışması ortaya koydu. Pamukkale Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Öğretim Üyesi Yard. Doç. Dr. Şevket Civelek’in yaptığı araştırmada, başarısızlığın altındaki sebepler şöyle sıralanıyor: Matematik korkusu, öğretmenlerin dersi sevdirememesi, dilinin anlaşılmaz olması, matematiğin günlük hayatta işe yaramayacağı ve sıkıcı olduğu inancı.

Anket için 70 ilde 250’şer düz, meslek, Anadolu, fen lisesi ve özel lise öğrencilerinden oluşan toplam 17 bin 500 öğrenciye matematik öğretimi hakkında 30 soru yöneltildi. Öğrencilerin yüzde 16’sı öğretmen-öğrenci diyaloğunun yetersizliği, yüzde 16’sı matematikten nefret etmesi, yüzde 16’sı not korkusu, yüzde 13’ü müfredatın uzun ve sıkıcı olması, yüzde 13’ü gereksiz görmesi, yüzde 11’i dersin temel felsefesinin verilmemesi ve öğretmenin sevdirememesi, yüzde 6’sı ise aileden yardım görmemesi yüzünden matematikte başarısız olunduğunu bildirdi. Ayrıca öğrencilerin yüzde 56’sı matematiğin günlük hayatta nasıl kullanılacağının anlatılmadığını, yüzde 23’ü derste kullanılan dilin anlaşılmaz olduğunu, yüzde 37’si ise matematiği öğrenirken sıkıldığını ifade etti.

Anket sonuçlarını değerlendiren Yard. Doç. Dr. Civelek, “Oldukça düşündürücü sonuçlar elde ettik. 15-16 yıl süren bu zaman diliminde, matematiksel düşünme yeteneğinin gelişmediğini tespit ettik.” dedi. Öğrencilerin ezberleyen, bilgiyi kullanamayan, yorum yapamayan, matematiksel ve mantıksal düşünmeyi beceremeyen insanlar olarak yetiştirildiğini söyleyen Civelek, bu yüzden bireyleri matematik korkusunun sardığını, kendilerine olan güvenlerini kaybettiğini belirtti. Civelek, bunun okulöncesi eğitimden itibaren üzerinde durulması gereken bir konu olduğunu kaydetti.

Civelek’in araştırmasına göre matematiğin korkulması gereken bir şey olduğu fikri, okulun ilk yıllarında başlıyor. Öğretmenler ve diğer insanlar, öğrencilere matematiğin zor ve çekinilmesi gereken bir ders olduğunu söylüyor. Öğretmen ile öğrenci arasındaki kopukluk da korkunun en önemli sebeplerinden birini oluşturuyor. Ayrıca toplumda matematik sadece çok zekilerin başarabileceği bir şey olarak lanse ediliyor. Öğrencilerin sınavlarda zaman baskısı altında problem çözmeye, matematiksel sonuç çıkarmaya zorlanması da başarısızlığa yol açıyor. Bunların sonucunda öğrenci kendini başarısız görüyor veya bu konuda yeteneğinin olmadığına inanmaya başlıyor
Dünya ikincisi: Bu dersi ancak öğretmen sevdirebilir
Uluslararası Matematik Proje Yarışması’nda ‘Tam Kare Toplamı’ adlı projesiyle dünya ikincisi olan Özel Servergazi Fen Lisesi 2. sınıf öğrencisi Bekir Danış, matematikte başarılı olmasının sebebini öğretmeninin matematiği sevdirmesine bağlayarak araştırmayı doğruluyor. 6. sınıfta öğretmeninin eğlenceli matematik sorularıyla matematiği sevdirdiğini söyleyen Danış, bu sayede dersten zevk almaya başladığını anlatıyor. Öğretmen iyi değilse öğrencinin matematikten soğuduğunu ifade eden Danış, “Dersten soğuyan öğrenci ise lise boyunca matematikten nefret ediyor.” diyor.

Esprili anlatım öğrencinin sıkılmasını önler Yard. Doç. Dr. Şevket Civelek, öğrencilerdeki matematik korkusunun yenilmesi için şunları tavsiye ediyor: Konu karmaşık hale getirilmeden öğrenciye sunulmalı. Öğretmen konuyu işlerken çok rahat olmalı, konuyu iyi bilmeli. Öğretmen, öğrenciler arasında aşırı rekabete mani olmalı. Öğrencilere küçük gruplar halinde çalışmaları için imkan sağlamalı. Eğitimci yavaş öğrenenlere daha fazla şans tanımalı. Öğrencinin hızını ölçen testlerden kaçınılmalı. Öğrencinin gayreti ödüllendirilmeli. Öğretmen, sadece cevabın sonucuna değil, çözümün nasıl yapıldığına da bakmalı. Öğrenci asla azarlanmamalı. Öğretmen dersi monoton bir şekilde anlatmamalı. Belli aralıklarda espriye de yer vererek öğrencinin sıkılmamasına zemin hazırlamalı.

Matematik bir ceza unsuru olarak asla kullanılmamalı. ‘50 tane alıştırma yap’ ve ‘sizin hepinize sınavda zor sorular sorayım da görün gününüzü’ tipinden cezalar ve tehditlerden uzak durulmalı. Öğrenciye, matematiği nasıl anlaması ve çalışması gerektiği öğretilmeli. Matematiğin bir roman gibi okumakla öğrenilemeyeceği, öğrencinin yazarak ve düşünerek çalışması tavsiye edilmeli. Konu üzerinde kendince bir yorum getirmesi önerilmeli. Öğretmen, konuyu anlatırken günlük olaylarla bağlantı kurmalı; matematiğin kullanılabileceği alanları öğrencilerle tartışmalı. Öğrencinin zorlanacağı noktaları açıklıkla ifade etmeli. Öğrencinin kafasında soru kalmamasına özen göstermeli.

Gauss Metodu

Carl Friedrich Gauss çok ünlü bir matematikçidir.1777-1885 yılları arasında Arşimet ve Newton ile mukayese edilecek ölçüde bilime katkıda bulunmuştur.Gauss modern matematiğin kurucusu olarak görülür.Astronomi ve fizikte de buluşlar gerçekleşmiştir.Hayatta olduğu sürece tam 155 adet eser yayınlanmıştır.

Rivayetlere göre zihninden çok hızlı bir hesap yapardı.Bundan dolayı matematik öğretmeninin ilgisini çekmişti.Gauss genellikle bütün buluşlarını 14 ve 17 yaşları arasında gerçekleştirmiştir.1972 yıllarında Euclid dışı geometriyle ilgilenmiştir.1974 yılında Newton’un “Principa” adlı eserini okuyarak küçük kareler metodunu bulmuştur.

1970-1975 yılları arasında Göttingen Üniversitesi’nde okumuştur.1801 yılında “Aritmetik Münakaşaları” adlı eserini yayınlamıştır.Ayrıca 17 kenarlı çokgenin pergel ve cetvel il çizilebileceğini göstermiştir.

1807 yılında Göttingen Üniversitesi Rasathanesi’ne direktör ve matematik profesörü olarak tayin edilmiştir.1812 yılında hipergeometrik serileri inceleyen ilk önemli eserini neşretmiştir.1818 yılında yer ölçmesiyle uğraşmaya başlamıştır.

1831 yılından sonra Wilhelm Weber ile elektrik ve magnetizma üzerine çalışmış ve beraberce 1833 yılında elektronik magnetik telgrafı gerçekleştirmişlerdir.

Ayrıca din ve felsefe üzerine kafa yormuş ancak bu konuda hiçbir eser yayınlamamıştır.Ölümünden sonra şahsi ve ilmi yazıları bulunmuştur.Kütüphanesinde tam 11424 adet eser mevcuttur.

Fakat bütün bu çalışmaları, ona, gerçek ilim adamlarının bulunacakları ve inanacakları yolu gösterememiştir

Mathematics

Mathematics (colloquially, maths, or math), is the body of knowledge centered on concepts such as quantity, structure, space, and change, and also the academic discipline that studies them. Benjamin Peirce called it "the science that draws necessary conclusions".[2] Lynn Steen[3] and Keith Devlin[4] maintain that mathematics is the science of pattern, that mathematicians seek out patterns whether found in numbers, space, science, computers, imaginary abstractions, or elsewhere.

Through the use of abstraction and logical reasoning, mathematics evolved from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Mathematicians explore such concepts, aiming to formulate new conjectures and establish their truth by rigorous deduction from appropriately chosen axioms and definitions.[5]

Knowledge and use of basic mathematics have always been an inherent and integral part of individual and group life. Refinements of the basic ideas are visible in mathematical texts originating in ancient Egypt, Mesopotamia, ancient India, ancient China, and ancient Greece. Rigorous arguments first appear in Euclid's Elements. The development continued in fitful bursts until the Renaissance period of the 16th century, when mathematical innovations interacted with new scientific discoveries, leading to an acceleration in research that continues to the present day.[6]

Today, mathematics is used throughout the world in many fields, including science, engineering, medicine, economics, and the social sciences. Applied mathematics, the application of mathematics to such fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new disciplines. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind, although applications for what began as pure mathematics are often discovered later.[7]

Contents [hide]
1 Etymology
2 History
3 Inspiration, pure and applied mathematics, and aesthetics
4 Notation, language, and rigor
5 Mathematics as science
6 Fields of mathematics
6.1 Quantity
6.2 Structure
6.3 Space
6.4 Change
6.5 Foundations and philosophy
6.6 Discrete mathematics
6.7 Applied mathematics
7 Common misconceptions
7.1 Relationship between mathematics and physical reality
8 See also
9 Notes
10 References
11 External links



Etymology

The word "mathematics" (Greek: μαθηματικά or mathēmatiká) comes from the Greek μάθημα (máthēma), which means learning, study, science, and additionally came to have the narrower and more technical meaning "mathematical study", even in Classical times. Its adjective is μαθηματικός (mathēmatikós), related to learning, or studious, which likewise further came to mean mathematical. In particular, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), in Latin ars mathematica, meant the mathematical art.

The apparent plural form in English, like the French plural form les mathématiques (and the less commonly used singular derivative la mathématique), goes back to the Latin neuter plural mathematica (Cicero), based on the Greek plural τα μαθηματικά (ta mathēmatiká), used by Aristotle, and meaning roughly "all things mathematical".[8] In English, however, mathematics is a singular noun, often shortened to math in English speaking North America and maths elsewhere.


History

A quipu, a counting device used by the Inca.Main article: History of mathematics
The evolution of mathematics might be seen as an ever-increasing series of abstractions, or alternatively an expansion of subject matter. The first abstraction was probably that of numbers. The realization that two apples and two oranges have something in common was a breakthrough in human thought. In addition to recognizing how to count physical objects, prehistoric peoples also recognized how to count abstract quantities, like time — days, seasons, years. Arithmetic (addition, subtraction, multiplication and division), naturally followed. Monolithic monuments testify to knowledge of geometry.

Further steps need writing or some other system for recording numbers such as tallies or the knotted strings called quipu used by the Inca empire to store numerical data. Numeral systems have been many and diverse.

From the beginnings of recorded history, the major disciplines within mathematics arose out of the need to do calculations relating to taxation and commerce, to understand the relationships among numbers, to measure land, and to predict astronomical events. These needs can be roughly related to the broad subdivision of mathematics, into the studies of quantity, structure, space, and change.

Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries have been made throughout history and continue to be made today. According to Mikhail B. Sevryuk, in the January 2006 issue of the Bulletin of the American Mathematical Society, "The number of papers and books included in the Mathematical Reviews database since 1940 (the first year of operation of MR) is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs."[9]


Inspiration, pure and applied mathematics, and aesthetics

Mathematics arises wherever there are difficult problems that involve quantity, structure, space, or change. At first these were found in commerce, land measurement and later astronomy; nowadays, all sciences suggest problems studied by mathematicians, and many problems arise within mathematics itself. Newton was one of the infinitesimal calculus inventors, Feynman invented the Feynman path integral using a combination of reasoning and physical insight, and today's string theory also inspires new mathematics. Some mathematics is only relevant in the area that inspired it, and is applied to solve further problems in that area. But often mathematics inspired by one area proves useful in many areas, and joins the general stock of mathematical concepts. The remarkable fact that even the "purest" mathematics often turns out to have practical applications is what Eugene Wigner has called "the unreasonable effectiveness of mathematics."

As in most areas of study, the explosion of knowledge in the scientific age has led to specialization in mathematics. One major distinction is between pure mathematics and applied mathematics. Several areas of applied mathematics have merged with related traditions outside of mathematics and become disciplines in their own right, including statistics, operations research, and computer science.

Many mathematicians talk about the elegance of mathematics, its intrinsic aesthetics and inner beauty. Simplicity and generality are valued. There is beauty also in a clever proof, such as Euclid's proof that there are infinitely many prime numbers, and in a numerical method that speeds calculation, such as the fast Fourier transform. G. H. Hardy in A Mathematician's Apology expressed the belief that these aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics.


Notation, language, and rigor

Most of the mathematical notation in use today was not invented until the 16th century.[10] Before that, mathematics was written out in words, a painstaking process that limited mathematical discovery. Modern notation makes mathematics much easier for the professional, but beginners often find it daunting. It is extremely compressed: a few symbols contain a great deal of information. Like musical notation, modern mathematical notation has a strict syntax and encodes information that would be difficult to write in any other way.

Mathematical language also is hard for beginners. Words such as or and only have more precise meanings than in everyday speech. Also confusing to beginners, words such as open and field have been given specialized mathematical meanings. Mathematical jargon includes technical terms such as homeomorphism and integrable. It was said that Henri Poincaré was only elected to the Académie française so that he could tell them how to define automorphe in their dictionary.[citation needed] But there is a reason for special notation and technical jargon: mathematics requires more precision than everyday speech. Mathematicians refer to this precision of language and logic as "rigor".

Rigor is fundamentally a matter of mathematical proof. Mathematicians want their theorems to follow from axioms by means of systematic reasoning. This is to avoid mistaken "theorems", based on fallible intuitions, of which many instances have occurred in the history of the subject.[11] The level of rigor expected in mathematics has varied over time: the Greeks expected detailed arguments, but at the time of Isaac Newton the methods employed were less rigorous. Problems inherent in the definitions used by Newton would lead to a resurgence of careful analysis and formal proof in the 19th century. Today, mathematicians continue to argue among themselves about computer-assisted proofs. Since large computations are hard to verify, such proofs may not be sufficiently rigorous.

Axioms in traditional thought were "self-evident truths", but that conception is problematic. At a formal level, an axiom is just a string of symbols, which has an intrinsic meaning only in the context of all derivable formulas of an axiomatic system. It was the goal of Hilbert's program to put all of mathematics on a firm axiomatic basis, but according to Gödel's incompleteness theorem every (sufficiently powerful) axiomatic system has undecidable formulas; and so a final axiomatization of mathematics is impossible. Nonetheless mathematics is often imagined to be (as far as its formal content) nothing but set theory in some axiomatization, in the sense that every mathematical statement or proof could be cast into formulas within set theory.


Mathematics as science

Carl Friedrich Gauss referred to mathematics as "the Queen of the Sciences".[12] In the original Latin Regina Scientiarum, as well as in German Königin der Wissenschaften, the word corresponding to science means (field of) knowledge. Indeed, this is also the original meaning in English, and there is no doubt that mathematics is in this sense a science. The specialization restricting the meaning to natural science is of later date. If one considers science to be strictly about the physical world, then mathematics, or at least pure mathematics, is not a science. Albert Einstein has stated that "as far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."[13]

Many philosophers believe that mathematics is not experimentally falsifiable,[citation needed] and thus not a science according to the definition of Karl Popper. However, in the 1930s important work in mathematical logic showed that mathematics cannot be reduced to logic, and Karl Popper concluded that "most mathematical theories are, like those of physics and biology, hypothetico-deductive: pure mathematics therefore turns out to be much closer to the natural sciences whose hypotheses are conjectures, than it seemed even recently."[14] Other thinkers, notably Imre Lakatos, have applied a version of falsificationism to mathematics itself.

An alternative view is that certain scientific fields (such as theoretical physics) are mathematics with axioms that are intended to correspond to reality. In fact, the theoretical physicist, J. M. Ziman, proposed that science is public knowledge and thus includes mathematics.[15] In any case, mathematics shares much in common with many fields in the physical sciences, notably the exploration of the logical consequences of assumptions. Intuition and experimentation also play a role in the formulation of conjectures in both mathematics and the (other) sciences. Experimental mathematics continues to grow in importance within mathematics, and computation and simulation are playing an increasing role in both the sciences and mathematics, weakening the objection that mathematics does not use the scientific method. In his 2002 book A New Kind of Science, Stephen Wolfram argues that computational mathematics deserves to be explored empirically as a scientific field in its own right.

The opinions of mathematicians on this matter are varied. While some in applied mathematics feel that they are scientists, those in pure mathematics often feel that they are working in an area more akin to logic and that they are, hence, fundamentally philosophers. Many mathematicians feel that to call their area a science is to downplay the importance of its aesthetic side, and its history in the traditional seven liberal arts; others feel that to ignore its connection to the sciences is to turn a blind eye to the fact that the interface between mathematics and its applications in science and engineering has driven much development in mathematics. One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematics is created (as in art) or discovered (as in science). It is common to see universities divided into sections that include a division of Science and Mathematics, indicating that the fields are seen as being allied but that they do not coincide. In practice, mathematicians are typically grouped with scientists at the gross level but separated at finer levels. This is one of many issues considered in the philosophy of mathematics.

Mathematical awards are generally kept separate from their equivalents in science. The most prestigious award in mathematics is the Fields Medal,[16][17] established in 1936 and now awarded every 4 years. It is often considered, misleadingly, the equivalent of science's Nobel Prizes. The Wolf Prize in Mathematics, instituted in 1979, recognizes lifetime achievement, and another major international award, the Abel Prize, was introduced in 2003. These are awarded for a particular body of work, which may be innovation, or resolution of an outstanding problem in an established field. A famous list of 23 such open problems, called "Hilbert's problems", was compiled in 1900 by German mathematician David Hilbert. This list achieved great celebrity among mathematicians, and at least nine of the problems have now been solved. A new list of seven important problems, titled the "Millennium Prize Problems", was published in 2000. Solution of each of these problems carries a $1 million reward, and only one (the Riemann hypothesis) is duplicated in Hilbert's problems.


Fields of mathematics

As noted above, the major disciplines within mathematics first arose out of the need to do calculations in commerce, to understand the relationships between numbers, to measure land, and to predict astronomical events. These four needs can be roughly related to the broad subdivision of mathematics into the study of quantity, structure, space, and change (i.e., arithmetic, algebra, geometry, and analysis). In addition to these main concerns, there are also subdivisions dedicated to exploring links from the heart of mathematics to other fields: to logic, to set theory (foundations), to the empirical mathematics of the various sciences (applied mathematics), and more recently to the rigorous study of uncertainty.


Quantity

The study of quantity starts with numbers, first the familiar natural numbers and integers ("whole numbers") and arithmetical operations on them, which are characterized in arithmetic. The deeper properties of integers are studied in number theory, whence such popular results as Fermat's last theorem. Number theory also holds two widely-considered unsolved problems: the twin prime conjecture and Goldbach's conjecture.

As the number system is further developed, the integers are recognized as a subset of the rational numbers ("fractions"). These, in turn, are contained within the real numbers, which are used to represent continuous quantities. Real numbers are generalized to complex numbers. These are the first steps of a hierarchy of numbers that goes on to include quarternions and octonions. Consideration of the natural numbers also leads to the transfinite numbers, which formalize the concept of counting to infinity. Another area of study is size, which leads to the cardinal numbers and then to another conception of infinity: the aleph numbers, which allow meaningful comparison of the size of infinitely large sets.


Natural numbers Integers Rational numbers Real numbers Complex numbers


Structure

Many mathematical objects, such as sets of numbers and functions, exhibit internal structure. The structural properties of these objects are investigated in the study of groups, rings, fields and other abstract systems, which are themselves such objects. This is the field of abstract algebra. An important concept here is that of vectors, generalized to vector spaces, and studied in linear algebra. The study of vectors combines three of the fundamental areas of mathematics: quantity, structure, and space. Vector calculus expands the field into a fourth fundamental area, that of change.


Space

The study of space originates with geometry - in particular, Euclidean geometry. Trigonometry combines space and numbers, and encompasses the well-known Pythagorean theorem. The modern study of space generalizes these ideas to include higher-dimensional geometry, non-Euclidean geometries (which play a central role in general relativity) and topology. Quantity and space both play a role in analytic geometry, differential geometry, and algebraic geometry. Within differential geometry are the concepts of fiber bundles and calculus on manifolds. Within algebraic geometry is the description of geometric objects as solution sets of polynomial equations, combining the concepts of quantity and space, and also the study of topological groups, which combine structure and space. Lie groups are used to study space, structure, and change. Topology in all its many ramifications may have been the greatest growth area in 20th century mathematics, and includes the long-standing Poincaré conjecture and the controversial four color theorem, whose only proof, by computer, has never been verified by a human.

Change

Understanding and describing change is a common theme in the natural sciences, and calculus was developed as a powerful tool to investigate it. Functions arise here, as a central concept describing a changing quantity. The rigorous study of real numbers and real-valued functions is known as real analysis, with complex analysis the equivalent field for the complex numbers. The Riemann hypothesis, one of the most fundamental open questions in mathematics, is drawn from complex analysis. Functional analysis focuses attention on (typically infinite-dimensional) spaces of functions. One of many applications of functional analysis is quantum mechanics. Many problems lead naturally to relationships between a quantity and its rate of change, and these are studied as differential equations. Many phenomena in nature can be described by dynamical systems; chaos theory makes precise the ways in which many of these systems exhibit unpredictable yet still deterministic behavior.

Foundations and philosophy

In order to clarify the foundations of mathematics, the fields of mathematical logic and set theory were developed, as well as category theory which is still in development.

Mathematical logic is concerned with setting mathematics on a rigid axiomatic framework, and studying the results of such a framework. As such, it is home to Gödel's second incompleteness theorem, perhaps the most widely celebrated result in logic, which (informally) implies that any formal system that contains basic arithmetic, if sound (meaning that all theorems that can be proven are true), is necessarily incomplete (meaning that there are true theorems which cannot be proved in that system). Gödel showed how to construct, whatever the given collection of number-theoretical axioms, a formal statement in the logic that is a true number-theoretical fact, but which does not follow from those axioms. Therefore no formal system is a true axiomatization of full number theory. Modern logic is divided into recursion theory, model theory, and proof theory, and is closely linked to theoretical computer science.

Discrete mathematics

Discrete mathematics is the common name for the fields of mathematics most generally useful in theoretical computer science. This includes computability theory, computational complexity theory, and information theory. Computability theory examines the limitations of various theoretical models of the computer, including the most powerful known model - the Turing machine. Complexity theory is the study of tractability by computer; some problems, although theoretically soluble by computer, are so expensive in terms of time or space that solving them is likely to remain practically unfeasible, even with rapid advance of computer hardware. Finally, information theory is concerned with the amount of data that can be stored on a given medium, and hence concepts such as compression and entropy.

As a relatively new field, discrete mathematics has a number of fundamental open problems. The most famous of these is the "P=NP?" problem, one of the Millennium Prize Problems.[18]

Applied mathematics

Applied mathematics considers the use of abstract mathematical tools in solving concrete problems in the sciences, business, and other areas. An important field in applied mathematics is statistics, which uses probability theory as a tool and allows the description, analysis, and prediction of phenomena where chance plays a role. Most experiments, surveys and observational studies require the informed use of statistics. (Many statisticians, however, do not consider themselves to be mathematicians, but rather part of an allied group.) Numerical analysis investigates computational methods for efficiently solving a broad range of mathematical problems that are typically too large for human numerical capacity; it includes the study of rounding errors or other sources of error in computation.


Common misconceptions

Mathematics is not a closed intellectual system, in which everything has already been worked out. There is no shortage of open problems.

Pseudomathematics is a form of mathematics-like activity undertaken outside academia, and occasionally by mathematicians themselves. It often consists of determined attacks on famous questions, consisting of proof-attempts made in an isolated way (that is, long papers not supported by previously published theory). The relationship to generally-accepted mathematics is similar to that between pseudoscience and real science. The misconceptions involved are normally based on:

misunderstanding of the implications of mathematical rigor;
attempts to circumvent the usual criteria for publication of mathematical papers in a learned journal after peer review, often in the belief that the journal is biased against the author;
lack of familiarity with, and therefore underestimation of, the existing literature.
The case of Kurt Heegner's work shows that the mathematical establishment is neither infallible, nor unwilling to admit error in assessing 'amateur' work. And like astronomy, mathematics owes much to amateur contributors such as Fermat and Mersenne.

Relationship between mathematics and physical reality

Mathematical concepts and theorems need not correspond to anything in the physical world. Insofar as a correspondence does exist, while mathematicians and physicists may select axioms and postulates that seem reasonable and intuitive, it is not necessary for the basic assumptions within an axiomatic system to be true in an empirical or physical sense. Thus, while most systems of axioms are derived from our perceptions and experiments, they are not dependent on them.

For example, we could say that the physical concept of two apples may be accurately modeled by the natural number 2. On the other hand, we could also say that the natural numbers are not an accurate model because there is no standard "unit" apple and no two apples are exactly alike. The modeling idea is further complicated by the possibility of fractional or partial apples. So while it may be instructive to visualize the axiomatic definition of the natural numbers as collections of apples, the definition itself is not dependent upon nor derived from any actual physical entities.

Nevertheless, mathematics remains extremely useful for solving real-world problems. This fact led Eugene Wigner to write an essay, The Unreasonable Effectiveness of Mathematics in the Natural Sciences.

Notes
1) ^ No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see Euclid).

2) ^ Peirce, p.97

3)^ Steen, L.A. (April 29, 1988). The Science of Patterns. Science, 240: 611–616. and summarised at Association for Supervision and Curriculum Development.

4)^ Devlin, Keith , Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe (Scientific American Paperback Library) 1996, ISBN 100716760223

5)^ Jourdain

6)^ Eves

7)^ Peterson

8)^ The Oxford Dictionary of English Etymology, Oxford English Dictionary

9)^ Sevryuk

10)^ Earliest Uses of Various Mathematical Symbols (Contains many further references)

11)^ See false proof for simple examples of what can go wrong in a formal proof. The history of the Four Color Theorem contains examples of false proofs accepted by other mathematicians.

12)^ Waltershausen

13)^ Einstein, p. 28. The quote is Einstein's answer to the question: "how can it be that mathematics, being after all a product of human thought which is independent of experience, is so admirably appropriate to the objects of reality?" He, too, is concerned with The Unreasonable Effectiveness of Mathematics in the Natural Sciences.

14)^ Popper 1995, p. 56

15)^ Ziman

16)^ "The Fields Medal is now indisputably the best known and most influential award in mathematics." Monastyrsky

17)^ Riehm

18)^ Clay Mathematics Institute P=NP


References

Benson, Donald C., The Moment of Proof: Mathematical Epiphanies, Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4.
Boyer, Carl B., A History of Mathematics, Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7. — A concise history of mathematics from the Concept of Number to contemporary Mathematics.
Courant, R. and H. Robbins, What Is Mathematics? : An Elementary Approach to Ideas and Methods, Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2.
Davis, Philip J. and Hersh, Reuben, The Mathematical Experience. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7.— A gentle introduction to the world of mathematics.
Einstein, Albert (1923). "Sidelights on Relativity (Geometry and Experience)".
Eves, Howard, An Introduction to the History of Mathematics, Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
Gullberg, Jan, Mathematics—From the Birth of Numbers. W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X. — An encyclopedic overview of mathematics presented in clear, simple language.
Hazewinkel, Michiel (ed.), Encyclopaedia of Mathematics. Kluwer Academic Publishers 2000. — A translated and expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online [1].
Jourdain, Philip E. B., The Nature of Mathematics, in The World of Mathematics, James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8.
Kline, Morris, Mathematical Thought from Ancient to Modern Times, Oxford University Press, USA; Paperback edition (March 1, 1990). ISBN 0-19-506135-7.
Monastyrsky, Michael (2001). "Some Trends in Modern Mathematics and the Fields Medal". Canadian Mathematical Society. Retrieved on 2006-07-28.
Oxford English Dictionary, second edition, ed. John Simpson and Edmund Weiner, Clarendon Press, 1989, ISBN 0-19-861186-2.
The Oxford Dictionary of English Etymology, 1983 reprint. ISBN 0-19-861112-9.
Pappas, Theoni, The Joy Of Mathematics, Wide World Publishing; Revised edition (June 1989). ISBN 0-933174-65-9.
Peirce, Benjamin. "Linear Associative Algebra". American Journal of Mathematics (Vol. 4, No. 1/4. (1881). JSTOR.
Peterson, Ivars, Mathematical Tourist, New and Updated Snapshots of Modern Mathematics, Owl Books, 2001, ISBN 0-8050-7159-8.
Paulos, John Allen (1996). A Mathematician Reads the Newspaper. Anchor. ISBN 0-385-48254-X.
Popper, Karl R. (1995). "On knowledge", In Search of a Better World: Lectures and Essays from Thirty Years. Routledge. ISBN 0-415-13548-6.
Riehm, Carl (August 2002). "The Early History of the Fields Medal". Notices of the AMS 49 (7): 778-782.
Sevryuk, Mikhail B. (January 2006). "Book Reviews" (PDF). Bulletin of the American Mathematical Society 43 (1): 101-109. Retrieved on 2006-06-24.
Waltershausen, Wolfgang Sartorius von (1856, repr. 1965). Gauss zum Gedächtniss. Sändig Reprint Verlag H. R. Wohlwend. ISBN 3-253-01702-8.
Ziman, J.M., F.R.S. (1968). "Public Knowledge:An essay concerning the social dimension of science".


for more look wikipedia.org

The Geometry of Music

Music as an audible exploration of hyperdimensional geometries

Julie J. Rehmeyer

The connection between mathematics and music is often touted in awed, mysterious tones, but it is grounded in hard-headed science. For example, mathematical principles underlie the organization of Western music into 12-note scales. And even a beginning piano student encounters geometry in the "circle of fifths" when learning the fundamentals of music theory.

But according to Dmitri Tymoczko, a composer and music theorist at Princeton University, these well-known connections reveal only a few threads of the hefty rope that binds music and math. To grasp the true structure of music, he says, we need to understand the geometry of hyperdimensional objects. Doing so has given him new ways of understanding pieces of music that have long baffled theorists and even led him to new insights into the history of music.

Tymoczko compares the structure of music to the shape of a rock face that a rock-climber is scrambling up. "If you know the conditions of the rock face, you can predict the motions of the climber," he says. "The structure of the space makes certain choices overwhelmingly natural or convenient. There's something similar that goes on with music. When you think about things abstractly, you can come to understand that the directions that music went aren't completely arbitrary. Composers are exploring the possibilities that musical space presents them with."

Tymoczko built on familiar geometrical analogs for music. For example, musical pitch is often imagined as lying on a line with low notes to the left and high notes to the right. Furthermore, as pitches go higher and higher, the notes repeat in different octaves, such that a low C, a middle C, and a high C all sound very similar. Often, the exact octave of a particular note doesn't matter very much in music. Instead, musicians commonly visualize a "pitch class circle," which comes from the original line by gluing together each point of the line that represents the same note in different octaves. So low C, middle C, and high C, for example, would all be glued together.

Applying the same kind of reasoning to complete pieces of music, Tymoczko created a geometric space in which he could analyze a piece of music with two notes being played simultaneously. He started with a piece of paper and made the horizontal direction represent the pitch of one note and the vertical direction represent the pitch of the other. A piece of music with two voices would correspond to dots moving around in this space.

Then he modified the space to embed musical structure within it. First, Tymoczko used the same method musicians used to create the pitch circle. He glued the left edge of the page to the right edge, turning the horizontal lines into circles and creating a cylinder from the whole page. Then he glued the bottom end of the cylinder to the top, turning the vertical lines into circles as well and creating a donut shape from the entire page.

Next, he noted that the order of the notes in a chord doesn't much matter. That means that the point on his page that has C in the horizontal direction and E in the vertical direction is really the same as the point that has E in the horizontal direction and C in the vertical direction. So he took his space and glued all those points together. It takes a bit of effort to visualize it, but for two simultaneous notes, this turns the donut shape into a Möbius strip.


Tymoczko used the same method to create geometrical spaces to model pieces with any number of simultaneous notes. A piece with three notes, for example, would correspond to points in three-dimensional space. When he wrapped the space around to form circles and identified chords with the same pitches in a different order, he created a twisted prismatic donut. More notes require more than three dimensions, which gets hard to picture but not so hard to describe mathematically.

Having constructed his spaces, he began translating musical principles into their geometric equivalents. He noted that if he plotted a major chord in his geometrical space and reflected it, as if across a mirror down the middle of the space, it turned the chord into a minor one. Rotating a chord to a different spot in the space corresponded to transposing the chord into a different key. Composers need to choose sequences of chords that the ear can make sense of harmonically, and Tymoczko noted that this tends to be accomplished by transitioning between chords using combinations of these geometric rotations and reflections, or approximations to them.

Composers also need to write music in such a way that our minds can link the sounds into simultaneous, overlapping melodies. This is this easiest when each individual melody moves only in fairly small steps.

The trick for composers is to accomplish both those goals, harmonic and melodic consistency, at the same time. "We've just translated that into a math problem," Tymoczko says. "The solution is to use sequences of points close together that are related by rotation, or nearly so."


Music theorists have long found Chopin's E minor prelude puzzling. Although the chord progressions sound smooth to the ear, they don't quite follow the traditional rules of harmony. When Tymoczko looked at the piece and watched the composition's motion through his geometrical space, he saw that Chopin was moving in a systematic way among the different layers of the four-dimensional cubes. "It's almost as if he's an improviser with a set of rules and set of constraints," Tymoczko says.


What's particularly amazing, Tymoczko says, is that the mathematics needed to describe these spaces wasn't even developed in Chopin's time. Nevertheless, he says, "it is unquestionable that he had some cognitive representation of the space. So there was this period of history where the only way Chopin could express this abstract knowledge was through music. His knowledge of four-dimensional geometry was most efficiently expressed through piano pieces."

Mathematical beauty

Most mathematicians derive aesthetic pleasure from their work, and from mathematics in general. They express this pleasure by describing mathematics (or, at least, some aspect of mathematics) as beautiful. Sometimes mathematicians describe mathematics as an art form or, at a minimum, as a creative activity. Comparisons are often made with music and poetry.

Bertrand Russell expressed his sense of mathematical beauty in these words:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry. (The Study of Mathematics, in Mysticism and Logic, and Other Essays, ch. 4, London: Longmans, Green, 1918.)

Paul Erdős expressed his views on the ineffability of mathematics when he said "Why are numbers beautiful? It's like asking why is Beethoven's Ninth Symphony beautiful. If you don't see why, someone can't tell you. I know numbers are beautiful. If they aren't beautiful, nothing is."


Contents
1 Beauty in method
2 Beauty in results
3 Beauty in experience
4 Beauty and philosophy
5 References
6 See also
7 External links


Beauty in method

Mathematicians describe an especially pleasing method of proof as elegant. Depending on context, this may mean:

A proof that uses a minimum of additional assumptions or previous results.
A proof that is unusually short.
A proof that derives a result in a surprising way (e.g. from an apparently unrelated theorem or collection of theorems.)
A proof that is based on new and original insights.
A method of proof that can be easily generalised to solve a family of similar problems.
In the search for an elegant proof, mathematicians often look for different independent ways to prove a result — the first proof that is found may not be the best. The theorem for which the greatest number of different proofs have been discovered is possibly the Pythagorean theorem with hundreds of proofs having been published.1 Another theorem that has been proved in many different ways is the theorem of quadratic reciprocity — Carl Friedrich Gauss alone published eight different proofs of this theorem.

Conversely, results that are logically correct but involve laborious calculations, over-elaborate methods, very conventional approaches, or that rely on a large number of particularly powerful axioms or previous results are not usually considered to be elegant, and may be called ugly or clumsy. This is related to the notion of Occam's Razor.


Beauty in results

Mathematicians see beauty in mathematical results which establish connections between two areas of mathematics that at first sight appear to be totally unrelated. These results are often described as deep.

While it is difficult to find universal agreement on whether a result is deep, some examples are often cited. One is Euler's identity eiπ + 1 = 0. This has been called "the most remarkable formula in mathematics" by Richard Feynman. Modern examples include the modularity theorem which establishes an important connection between elliptic curves and modular forms (work on which led to the awarding of the Wolf Prize to Andrew Wiles and Robert Langlands), and "monstrous moonshine" which connected the Monster group to modular functions via a string theory for which Richard Borcherds was awarded the Fields medal.

The opposite of deep is trivial. A trivial theorem may be a result that can be derived in an obvious and straightforward way from other known results, or which applies only to a specific set of particular objects such as the empty set. Sometimes, however, a statement of a theorem can be original enough to be considered deep, even though its proof is fairly obvious.


Beauty in experience

Some degree of delight in the manipulation of numbers and symbols is probably required to engage in any mathematics. Given the utility of mathematics in science and engineering, it is likely that any technological society will actively cultivate these aesthetics, certainly in its philosophy of science if nowhere else.

The most intense experience of mathematical beauty for most mathematicians comes from actively engaging in mathematics. It is very difficult to enjoy or appreciate mathematics in a purely passive way - in mathematics there is no real analogy of the role of the spectator, audience, or viewer.

Bertrand Russell referred to the austere beauty of mathematics.


Beauty and philosophy

Some mathematicians are of the opinion that the doing of mathematics is closer to discovery than invention. These mathematicians believe that the detailed and precise results of mathematics may be reasonably taken to be true without any dependence on the universe in which we live. For example, they would argue that the theory of the natural numbers is fundamentally valid, in a way that does not require any specific context. Some mathematicians have extrapolated this viewpoint that mathematical beauty is truth further, in some cases becoming mysticism.

Pythagoras (and his entire philosophical school of the Pythagoreans) believed in the literal reality of numbers. The discovery of the existence of irrational numbers was a shock to them - they considered the existence of numbers not expressible as the ratio of two natural numbers to be a flaw in nature. From the modern perspective, Pythagoras' mystical treatment of numbers was that of a numerologist rather than a mathematician.

In Plato's philosophy there were two worlds, the physical one in which we live and another abstract world which contained unchanging truth, including mathematics. He believed that the physical world was a mere reflection of the more perfect abstract world.

Galileo Galilei is reported to have said "Mathematics is the language with which God wrote the universe", a statement which (apart from the implicit deism) is consistent with the mathematical basis of all modern physics.

Hungarian mathematician Paul Erdős, although an atheist, spoke of an imaginary book, in which God has written down all the most beautiful mathematical proofs. When Erdős wanted to express particular appreciation of a proof, he would exclaim "This one's from the Book!". This viewpoint expresses the idea that mathematics, as the intrinsically true foundation on which the laws of our universe are built, is a natural candidate for what has been personified as God by different religious mystics.

Twentieth-century French philosopher Alain Badiou claims that ontology is mathematics. Badiou also believes in deep connections between math, poetry and philosophy.

In some cases, natural philosophers and other scientists who have made extensive use of mathematics have made leaps of inference between beauty and physical truth in ways that turned out to be erroneous. For example, at one stage in his life, Johannes Kepler believed that the proportions of the orbits of the then-known planets in the Solar System had been arranged by God to correspond to a concentric arrangement of the five Platonic solids, each orbit lying on the circumsphere of one polyhedron and the insphere of another. As there are exactly five Platonic solids, Kepler's theory could only accommodate six planetary orbits, and was disproved by the subsequent discovery of Uranus.


References
Aigner, Martin, and Ziegler, Gunter M. (2003), Proofs from THE BOOK, 3rd edition, Springer-Verlag.
Chandrasekhar, Subrahmanyan (1987), Truth and Beauty. Aesthetics and Motivations in Science, University of Chicago Press, Chicago, IL.
Hadamard, Jacques (1949), The Psychology of Invention in the Mathematical Field, 1st edition, Princeton University Press, Princeton, NJ. 2nd edition, 1949. Reprinted, Dover Publications, New York, NY, 1954.
Hardy, G.H. (1940), A Mathematician's Apology, 1st published, 1940. Reprinted, C.P. Snow (foreword), 1967. Reprinted, Cambridge University Press, Cambridge, UK, 1992.
Hoffman, Paul (1992), The Man Who Loved Only Numbers, Hyperion.
Huntley, H.E. (1970), The Divine Proportion: A Study in Mathematical Beauty, Dover Publications, New York, NY.
Loomis, Elisha Scott (1968), The Pythagorean Proposition, The National Council of Teachers of Mathematics. Contains 365 proofs of the Pythagorean Theorem.
Peitgen, H.-O., and Richter, P.H. (1986), The Beauty of Fractals, Springer-Verlag.
Strohmeier, John, and Westbrook, Peter (1999), Divine Harmony, The Life and Teachings of Pythagoras, Berkeley Hills Books, Berkeley, CA.

Neden Matematik

TUBITAK Bilim ve Teknik Dergisi, sayı 392, Temmuz 2000, 66-68.
Dünyanın değişik yerlerinden gelen elli kadar matematikçi geçenlerde Antalya’da mütevazi bir otelin barında buluştular. Sabah saat dokuz. Antalya’da mükemmel bir bahar sabahı başlarken matematikçiler perdeleri kapattılar ve daha önceden boşaltılıp sınıf haline getirilen barda yerlerini aldılar. Yaşlı bir matematikçi eski ama hâlâ çözülmemiş bir problemi anlatmaya başladı. Perdenin aralığından Akdeniz’in parlak maviliğine inen Torosların silueti görünüyor. Dinleyiciler bu muhteşem görüntüye kaçamak bir bakış bile atmıyorlar. Tüm dikkatlerini bu eski problemi anlamaya vermişler. Onlar matematikçi. Neden bu mesleği seçmişler bilinmez.

Yirminci yüzyılın başlarında yaş***ış matematikçilerden Caratheodory, neden onca iş varken seçe seçe matematiği seçtiğini şu sözlerle anlatmaya çalışır: “Hayatıma anlam verecek tek şeyin hiç bir kısıtlama olmaksızın kendimi matematik çalışmaya adamak olduğu yönündeki saplantımdan kendimi kurtaramadım.”

Maddi imkansızlıkları ciddiye dahi almadan, bir otelin barını sınıfa çevirme pahasına, hatta yol paralarını da kendileri vererek gelen bu matematikçileri buraya çeken ne? Dışarıdaki havuzda çığlık çığlığa eğlenen çocukların sesleri arasından tahtadaki yaşlı matematikçinin kısık sesiyle anlattığı problemi dinlemeye çalışan bu matematikçilerin ilgisini bu denli toplayan bu konu, matematik, nasıl bir şey?

Eflatun “Bir karenin köşegeninin, kenarlarla orantılanamayacağını bilmeyen kimse insan sıfatına lâyık değildir” der.
Dakikalar ilerledi. Artık yaşlı matematikçi problemin tanımlanmasını ve tarihçesini bitirdi. Şimdi teknik ayrıntılara girecek. Buraya kadar olan kısım matematik eğitimi almış herkesin anlayabileceği düzeydeydi. Bundan sonra dinleyenler kendi konularının sayılar teorisine olan uzaklığıyla ters orantılı olarak sırayla konuşmadan kopacaklar. Sonlarda ise yalnızca o problemle ilgili bir kaç kişi kalacak konuşmayı aktif olarak takip eden. Peki diğerleri ne olacak?
Tecrübeli hoca derse başlamadan önce sınıfa döner ve “Eğer sınıfta uyuyan olursa beni uyandırın” der…
Onlar yıllardır bu çeşit konferanslarda yapmaya alıştıkları şeyi yapacaklar. Önce konuşma tamamen onların ilgi ve bilgi alanı dışına çıkıncaya kadar dinleyecekler. Sonra konuşmayı bırakıp kendi kafalarının içindeki dünyaya geçecekler ve o dakikaya kadar dinlediklerinin kendi uğraştıkları probleme nasıl uygulanacağını düşünmeye başlayacaklar. Yavaş yavaş akıllarına yeni fikirler gelecek. Önlerindeki kağıda bu fikirlerin ana hatlarını çiziktirecekler ilerde hatırlamak üzere. İlerde hatırlamak?
Günümüzden yaklaşık 4000 yıl öncesine tarihlenen ve Plimpton 322 diye bilinen Mezopotamya tabletleri üzerinde, kenarları tam sayı olan ve belli bir kurala göre sıralanmış dik üçgenlerin kenar uzunlukları verilmiştir.
Tahtadaki yaşlı matematikçi konuşmasını yılların kazandırdığı rahatlıkla öyle bir ustalıkla anlatıyor ki kendi kafalarındaki matematik dünyasına gitmiş olanlar sık sık geri gelip konuşmaya katılma ihtiyacı duyuyorlar. Aynı konuyu genç bir matematikçi anlatsaydı çoktan herkes kendi dünyasına kaçmış olurdu. Zaten o genç konuşmacı da dinleyicilerden habersiz kendi probleminin labirentlerinde tek başına dolaşıyor olurdu.
Hocalık hayatının ilk dersinden alı al moru mor çıkan genç matematikçi yan sınıftan sakin ve memnun bir şekilde çıkan yaşlı matematikçiye sarılır ve “Öğrenciler bana matematik ne işe yarar diye sordular, çok zorlandım. Size sorduklarında siz ne yapıyorsunuz?” diye sorar. Yaşlı matematikçi hiç umursamadan cevaplar: “Bana sorduklarında ben söylüyorum.”
Konuşma bitti. şimdi kahve molasındayız. Havuzun kenarındaki çardağın altındayız. Akdeniz’in göz kamaştıran güneşi, Torosların heybeti ve açıklarda sezonun ilk turistlerini gezdiren motorların patpatları arasında mükemmel bir Antalya günü mayalanıyor. Ama bizim matematikçilerin bundan etkilendikleri söylenemez. Kulak kabarttığınız zaman Türkçe, İngilizce ve Rusça konuşmaların çoğunun az önceki konuşmada konu edilen problemle ilgili olduğunu görüyorsunuz. Kimileri bazı tekniklerin neden bu problemi çözemediğini anlamaya çalışıyor. Kimileri bir masaya oturmuşlar, önlerindeki kağıda çizdikleri bir kaç sembole derin derin ve hareketsiz bakıyorlar. Zaman zaman biri bir söz söylüyor ve o sembollere bir tane daha katıyor. Öbürü onaylıyor. Sonra tekrar uzun uzun kağıda bakıyorlar. Bazıları oturmuş harıl harıl yakaladıklarını sandıkları bir teoremi kağıda geçiriyorlar ve aynı telaşla kahvelerini içiyorlar. Herkesin elinde bir kahve. Zaten matematikçiler kahveyi teoreme çeviren makineler değil midir? Peki matematikçileri bunca teoremi bulmaya iten dürtü nedir?

Dünyanın tepsi gibi düz olduğunun okullarda okutulduğu yıllarda Dünyanın eğik olması gerektiğini düşünen ve yerkürenin eğimini hesaplayan Knidoslu Eudoxus bir gün başını göğe kaldırıp arkadaşlarına “Şu güneşin yapısını, şeklini ve büyüklüğünü tam olarak kavrayabileceğimi bilsem yanına gidip yanmaya razı olurdum” der.
Öğleden sonra yine bardayız. Bu kez orta yaşlı bir matematikçi bir bölümünü çözdüğü, kalan bölümünün de nasıl çözüleceğini keşfettiği bir problemi meslektaşlarıyla paylaşıyor. Dinleyiciler Kolomb’un gemisinden Yeni Dünyanın bilinmezliklerine bakan tayfaların heyecanıyla konuşmayı izliyorlar.
Sabah konuşan yaşlı matematikçinin yıllar içinde kazandığı rahatlık henüz bu konuşmacıya ulaşmamış. Ne de olsa bu konuşmacı daha genç. Çok kısa sürede konuşmayı konunun teknik ayrıntılarına getiriyor. Artık konuşmayı yalnız o konuda kendileri de araştırma yapan matematikçiler izliyorlar. Öyle ki konuşma arasında bir soru sormak isteyen sanki diğerlerini rahatsız etmek istemezmiş gibi alçak sesle soruyor. Diğerleri kendi dünyalarında harıl harıl çalışıyorlar. Matematikçilerin böyle ayrı bir dünyaya çekilip kendi problemlerinin sırlarını çözmek için kullandıkları en uygun mekanlar bu çeşit konferanslar, fakat onlar diğer fırsatları da değerlendirirler. Örneğin hatır için katıldığı partide bir kenarda oturup somurtan matematikçi “Beni rahatsız etmeyin, meşgulum” demektedir. Zaten yolda karşıdan karşıya geçerken hayati tehlike atlatmayan ya da duşa girip de çıkmayı unutmayan matematikçiye camiada iyi gözle bakılmaz.
Evinin bahçesindeki çimlerin üzerine sırt üstü yatmış, bulutlara bakan matematikçiye oğlu pencereden seslenir “Baba, çok çalıştın, artık içeri gel.”
Konuşma ilerledikçe Antalya sıcağı bara dolmaya başlıyor. Havuza atlayanların çığlıkları ve mevsimin ilk sıcaklarını karşılayan kuşların şaşkın ve tereddütlü ötüşleri bardakilerin dikkatini dağıtmaya yetmiyor. Konuşmadan kopanlar zaten kendi problemlerine yoğunlaşmış çözüm arıyorlar. Konuşmayı takip edenler ise orta yaşlı matematikçinin çizdiği şekillerin simgelediği kavramları kendi matematik gözlerinde canlandırmak üzere konuşmacı ile birlikte başka bir boyuttalar. Zaten tahtaya çizilen şekiller iki boyutlu gerçel figürler, oysa anlatılan konu karmaşık sayılarla ilgili çok boyutlu bir uzayda olan bir olay.
Poincare geometri için “Yanlış şekillerle doğru düşünebilme sanatıdır” der.
Barda bu dünya ile temas halinde kalan tek kişi oturum başkanı. Onun görevi de konuşmanın zamanında bitmesini sağlamak. Bar, içindekilerle birlikte bir kara deliğin içinden bambaşka bir evrene ışınlanmış. Zamanı gelince bu barı yine bu otelin birinci katındaki köşesine geri getirme görevi oturum başkanında. Sık sık saatine bakıyor. Tüm sorumluluk onda.
Yirminci yüzyılın en yetkin matematikçilerinden Hilbert’e eğer bin yıl sonra dünyaya geri gelebilse ilk merak edip öğrenmek isteyeceği şeyin ne olacağı sorulduğunda “Riemann hipotezi çözüldü mü diye sorarım” demiştir.
Konferansın son günü. Çok genç bir matematikçi üzerinde çalıştığı bir problemi anlatıyor. Bu son konuşma olmasına rağmen bar yine dolu. Genç matematikçinin konuyu çok kısa sürede teknik ayrıntılara boğacağı ve dinleyicilere kendi problemleriyle ilgilenmek için çok daha uzun bir süre vereceği tahmin edildiği için kimse bu fırsatı kaçırmak istememiş. Gerçekten genç matematikçi öyle bir coşku, heyecan ve süratle teknik labirentlere dalıyor ki onu ön sıralarda dinleyen hocası fenalık geçiriyor. Her genç matematikçinin konuşmasında olduğu gibi konuşma derhal içinden çıkılmaz hesaplara ve kendinden başka kimsenin anlamadığı ayrıntılara kayıyor. Oysa öylesine büyük bir coşku ve sevgiyle anlatıyor ki.
Bu tutkunun, bu sevginin, bu ateşin bir tarifi var mı?
Matematiği Mısırlı matematikçilerden bile daha iyi bildiğini söylemekten çekinmeyen Democritus tüm bu kibirine rağmen “Her hangi bir şeyin nedenini kavrayabilmeyi tüm Pers krallığını fethetmeye tercih ederim” demiştir.

Konuşmayı takip edebilenler artık konuyu bırakmışlar, genç matematikçinin makul bir açığını yakalayıp onu biraz hırpalamak istiyorlar. Bu çeşit iyi niyetli hırpalamalar matematik eğitiminin bir parçasıdır. Önde oturan hoca da böyle bir hırpalama başlarsa hangi safhada müdahele etmesi gerekeceğinin hesabını yapıyor. Ama tüm heyecanına, süratine ve tecrübesizliğine rağmen genç konuşmacı beklenen açığı vermiyor. Herkes memnun. Oturum başkanı saatine bakıyor ve barı tekrar yerkürenin Antalya civarındaki eski yerine ışınlıyor. Konuşmanın ve konferansın bittiğini ilan ediyor.
On yedinci yüzyıl İngiliz şairlerinden Alexander Pope bir şiirinde şöyle der:
Öğrenmenin azı tehlikeli bir iştir;
Kana kana iç, ya da tadına bile bakma ilham pınarının.
Orada sığ akıntılar başını döndürür, sarhoş eder
Ve ancak bol bol içince ayıltır yeniden.
Amerika Birleşik Devletlerinde üniversite ya da araştırma enstitülerinde çalışan matematikçilerin üye olduğu Amerikan Matematik Derneğinin üye sayısı yaklaşık 30,000’dir. Uygulamaya yönelik ve endüstride çalışan matematikçiler de Uygulamalı ve Endüstriyel Matematik Derneği’ne üye olurlar ve o derneğin de yaklaşık 10,000 üyesi vardır. Demek ki Amerika yaklaşık 235 milyon nüfusu içinde 40,000 kayıtlı matematikçi barındırmaktadır. Kaba bir hesapla Türkiye’de de bu oranlar geçerli olsa 10,000 civarında kayıtlı matematikçimizin olmasını bekleriz. Oysa bizde bu sayı 500 civarındadır.
Napolyon “Bir ülkedeki matematik biliminin gücü ile devletin gücü birbirine paraleldir” der.
Matematikçiler artık ertesi yıl yine toplanılması dilekleriyle otelden ayrılmaya başladılar. Toplantıyı ertesi yıl düzenleme görevini verdikleri matematikçiye toplantının daha iyi olması için ne yapması gerektiği konusunda fikirler veriyorlar. Verilen fikirler hep konuların seçimi, konuşmaların içerikleri ve tartışma zamanlarının ayarlanmasıyla ilgili. Kimse konferans boyunca bir türlü çalışmayan havalandırma sisteminden, çıkan yemeklerin kalitesizliğinden, en acil durumlarda göçen resepsiyon bilgisayarlarından ya da barın ders için pek de ideal bir mekan olmadığından şikayet etmiyor. Nasıl olsa seneye konuşmalar başladığında herkes o konuşmadan alacağı kadarını alıp kendi problemlerinin dünyasına çekilecek. Bu dünya ile ilgili hiç bir talepleri o yüzden olmuyor.
Ama bunun bir istisnası var. Kahveler zamanında ve kıvamında hazır olmalı. Eğer kahve servisi biraz aksasaydı yıkarlardı oteli…

Matematigin Siniflandirilmasi

Matematiğin Sınıflandırılması
2 ye ayırabiliriz;
1-Uygulamalı Matematik 2- Pür Matematik


Matematiğin alt dallarını kesin bir biçimde ayırmak zordur. Belki de en kolay sınıflandırma, temelde içerik değil de daha çok motivasyon ve vurgu farkından kaynaklanan uygulamalı ve pür matematik şeklinde yapılan sınıflandırmadır. Pür matematik, matematiğin kendisi için yapılan matematiktir. Diğer bir deyişle "acaba bu ne işe yarayacak" kaygısı gütmeden yapılan matematik. Uygulamalı matematikse üretilen pür matematiği gerçek hayata uygulama zamanı geldiğinde yapılan matematiğin genel adıdır. 100'den fazla alt dalı olan matematiği, ki bu dalların sayısı her geçen vakit artmaktadır, içerik bakımından genel hatlarıyla sınıflandırdık. Burada sadece popüler olan birkaç ana dalı ele alabildik.


Matematiğin Temel Kuramları
Mantık Kuramı
İspat Kuramı
Model kuramı
Kategori kuramı
Küme kuramı
Özyineleme kuramı

Cebir
Grup kuramı
Halka kuramı
Cisim Kuramı
Lineer cebir
Galois Kuramı
Sayılar Kuramı
Cebirsel Geometri
Kombinatorik

Geometri
Öklid geometrisi
Hiperbolik Geometri
Eliptik Geometri
Metrik Geometri
Projektif Geometri
Çizge Kuramı
Diferansiyel Geometri
Fraktal Geometri


Uygulamalı Matematik
Olasılık Kuramı
İstatistik
Matematiksel fizik
Kısmi Dif. Denklemler
Oyun Kuramı
Sistem ve Kontrol Kuramı
Yaklaşım Kuramı
Matematiksel İktisat
Seçim Kuramı
Aktüerya
Finansal Matematik
Kriptografi

Topoloji
Genel Topoloji
Cebirsel Topoloji
Geometrik Topoloji
Düğüm Kuramı
Diferansiyel Topoloji
Nokta-küme Topolojisi

Analiz
Reel Analiz
Ölçüm Kuramı
Kompleks Analiz
Tensör ve Vektor Analizi
Diferansiyel ve İntegral Denklemler
Nümerik Analiz
Fonksiyonel Analiz

Sıfırda nerden çıktı diyenlere !!!

Onluk sistemin bir üstünlüğü, sıfır rakamı için ayrı bir işaretin (sembolün) bulunmasıdır. Sıfır işaretinin, gerektiğinde basamaklara (hanelere) yazılması gerekmektedir. Aksi halde, boş bırakılan basamak (hane) birçok yanlış anlaşılmalara sebep olur. Örneğin : Bugün, rakamla 407 şeklinde yazdığımız, dört yüz yedi sayısını, sıfır işareti kullanmadan, 4.7 veya 4 7 (4 ve 7 nin arası biraz boş bırakılarak) şeklinde göstermek mümkünse de, anlam bakımından birçok karşılıklara sebep olabilir.Sıfır kavramını (fikrini) ilk olarak, hangi medeniyet içerisinde ve kim tarafından ortaya konulmuş (kullanılmış) olduğunda, kaynaklar hemfikir değildi. Bununla beraber, Eski Hintliler'de, milattan sonra 632 yılından itibaren sıfır için özel bir işaretin kullanılmış olduğunu, zamanımıza kadar intikal eden belgeler göstermektedir.Eski Hintlilerden kalma kitabelerde (yazıtlarda) görülen, rakam ve işaretler, günümüzde "Hint-Arap sistemi" olarak adlandırılan sisteme göre benzerlik olduğunu, ve nümerik (terkiym) sistemin, o devirde kullanıldığını göstermektedir. Daha sonraki yıllara ait kitabeler, sayılarda, rakamın kendi zat'i değeriyle vaz'i (konum) değeri, (yani sayı içindeki anlam değeri) arasındaki bağıntının bilindiğini, sıfır anlamını veren, "0" gibi bir işaret kullanıldığını da göstermektedir.Sıfır için, ayrı bir özel işaretin bulunuşu ve basamak fikrinin ustaca kullanılışı, onluk sistemi (decimal), sadece matematiğin değil, ilim dünyasının, en elverişli sistemlerinden biri yapmıştır. Onluk sistemin bu hali için, Fransız matematikçi Pierre Siman Laplace (1749-1827), bu konuda "Dünyanın en faydalı sistemlerinden biridir." demektedir.ESKİ HİNT MEDENİYETLERİNDE SIFIRRomalı ve Çinlilerin eksine, Eski Hint alimleri, aritmetik işlemleri, özel bir harf ve işaret belirtmeden, sadece 1 den 9 a kadar olan rakamlardan istifade ederek yazarlardı. Rakamla, hesap yapmanın tek örneği olan, bu pozisyonun tespiti ve yazılması merhalesine ulaşanlar, sadece Eski Hintliler ve Mayalardı.Kaynaklar; Hindistan'dan, 300 yıl kadar önce, sayı işaretinin, rakam şekline dönüşmeye başladığını belirtmekte. Hintliler, en geç, 6. yüzyıla doğru, belki de biraz daha önceki tarihlerde, aritmetik işlemlerde, sadece 1 den 9 a kadar devam eden dokuz ayrı rakam halinde kaldılar. Böylece, hesap işlerinde, sağdan sola doğru çoğalan (yükselen) rakamlar, ilk olarak ortaya çıktı (görüldü). Bu rakamlar, hemen hemen 622 yılından itibaren Hindistan dışında da tanınmaya başladı. Fırat'ta bir okul müdürü, aynı zamanda da manastır idarecisi olarak çalışan Suriyeli alim Sevarus Sabokht : "Bilinen bütün usullere üstün olan, Hint hesabının, yani dokuz ayrı rakamın (işaretin) maharetli usulünden bahseder" Bu durum, Hint rakamlarının mahzar olduğu ilk taktirdir. S. Sabokht, bu dokuz ayrı rakamlarla, yeni bir usul dahilinde hesap yapabildi.Ancak; bu dokuz ayrı rakam, bazı sayıları ifade etmeye yeterli gelmiyordu. Çünkü; üç bin yedi yüz elli dört olan bir sayıyı 3754 şeklinde belirtmek mümkündür. Değeri üç yüz sekiz olan bir sayının da, 38 şeklinde meydana çıkmaması için, noksan (boş) kalan onlar basamağına (hanesine) değişik bir işaretlemenin yapılması zorunludur. Noksan (boş) kalan, basamağı (haneyi) işaretleyip, belirtmek için "boşluğu" şekillendirmek, anlamlandırmak zorundaydılar. Noktayı "sunya" veya "sunyabinde" , boşluk veya içi boş yuvarlağı da "kha" kelimesi ile adlandıran Hint alimleri, boş kalan basamağa (haneye), sembol olarak "daire" veya "nokta" şeklinde yeni bir sembol verdiler.Düşünce tarihin en önemli olaylarından biri sayılan, bu sayı yazısına, son mükemmeliyeti Hintliler'in vermiş olduğu ortaya çıkmaktadır.O halde, menşe itibariyle, sadece, basamak sistemi içinde, noksan basamağa (haneye) gerekli işaret olarak başvurulan bu sembol, yani bugünkü ifadeyle "sıfır" rakamı, derhal müstakil bir sayı şeklinde, ilk olarak Hint hesabında ortaya çıkmıştır.Bu sayı işareti, yani "0" (sıfır) veya "." (nokta) anlamındaki işaret, miladın 400. yılında, ilk defa Hint yazılı eserleri içinde görülmeye taşlar. Hint Dünyası'nın, ünlü matematikçi ve astronomu Brahmagupta (598-660) , 632 yılında yazdığı, astronomi konuları ile ilgili Siddhanta adlı eserinde, dokuz ayrı sayı işareti ve sıfır ile birlikte hesap yapmaya dair kaideleri göstermiştir. TÜRK-İSLAM DÜNYASINDA SIFIR773 yılında, Kankah isimli Hintli bir astronom, Halife el-Mansur'un (754-775), Bağdat'taki sarayına gelir. Zamanın ünlü İslam alimi İbn'ül Adami, astronomi cetvelleri ile ilgili eserinde, ilim tarihi için önemli olan bu olayı, "İnci Gerdanlık" başlığı altında şöyle açıklar;"Hicretin 156. (773) yılında, Hintli bir alim elinde bir kitapla, Halife el-Mansur'un huzuruna çıkar. Kardağa'ların Kral Figar adına istinsah ettikleri bir kitabı, Halifeye sunar. El-Mansur, bu eseri, hemen Arapça'ya çevrilmesini ve gezegenlerin hareketleri ile ilgili bir eser yazılmasını emreder... Bu görevi, Muhammed bin İbrahim el-Fezari üzerine alarak 'Astronomlar Nazarında Büyük Sinhind' adlı bir eser yazar. Bu eserin etkinliği, halife el-Memun zamanına kadar sürer. Eseri, Muhammed bin Musa el Harezmi, astronomlar için yeniden hazırlar (yazar). Sinhind Metodunu uygulayan astronomlar, eseri çok beğenirler ve konusunun süratle yaygınlaşmasını sağlarlar."Hintli alimin, beraberinde Bağdat'a getirdiği ve onunla, önce Halife el-Mansur'un ilgisini çektiği kitap, gerçekte Brahmagupta'nın Siddhanta adlı eserinden başka bir eser değildi. Sinhint adıyla Arapçaya çevrilen bu eser, zamanın halife ve alimleri arasında, hemen ilgi görüp süratle yayıldı.Harezmi tarafından yeniden hazırlanan söz konusu eser, İngiliz tercüman Baht'lı Adelhard tarafından, zamanın ilim dili olan Latinceye tercüme edildi ve Batılı alimlerin istifadesine sunuldu. Bu tercüme kitap; Hint sayılarını açıklayan, Hint hesabını, sayı yazısını, toplama ve çıkarma, ikiye bölme, iki misli artırma, çoğaltma ve bölme ile kesir hesabını öğreten Hesap Sanatına Dair adlı ikinci eserdir.Bu Latince tercüme eser, önceleri İspanya'ya gelir ve 12. yüzyıl başlarında, Orta Avrupa'ya geçerek yaygınlaşır.Hint alimleri, daire şeklinde gösterdikleri ve bugünkü ifadeyle "0" (sıfır) olarak adlandırılan kelime için, bir şeyin hiçliği ve boşluğu anlamını ifade eden "sunya" adını vermişlerdir.İslam alimleri (Araplar) da bu işareti ve anlamını öğrenince; Arapçada boşluk anlamına gelen "es-sıfır" adını vermişlerdir.Leonardo, es-sıfır kelimesini Latince'ye tercüme ederek Latince metinlerde cephrum şeklinde Latince'leştirdi.Daha sonraki yıllarda, Avrupa'nın değişik memleketlerinde, değişik yazım (imla) şekilleri kazanmıştır. Bunlardan :Leonardo'nun eserine istinaden, önce zefero, daha sonra da zero yazım şeklini aldı ( Livra kelimesinin zamanla lira yazım şeklini alması gibi.)Fransa'da ise; gizli işaret anlamına gelen chiffre şeklinde adlandırılan cephirum kelimesi, chiffer = hesap yapmak şeklini alarak, yaygınlaşmaya devam etti.Batı'da, İtalyanca aynı anlama gelen, zero kelimesinin kabülü sonucu, bu kelimenin iki ayrı anlamı sebebiyle İngiltere'de cipher ve zero şeklini aldı.Almanya'da da, ziffer yazım şeklini aldı. 14. yüzyıldan sonraki yıllarda da ziffern yazım şeklinde kullanılmaya başlandı.Saverus Sabokht, Brahmagupta ve Harezmi isimleri, Arap rakamlarının, Batı'da görülmesinde birbirini takip eden üç isim olarak karşımıza çıkmaktadır.Batı literatüründe "Arap Rakamları" olarak bilinen, İslam Dünyası rakamlarının, sıfır "0" dahil olmak üzere, on ayrı şeklini Batı'ya ilk defa öğreten, papalık tahtının şair ve matematikçisi Gerbert olmuştur. Gerbert'in etkisi tam sekiz yüz yıl devam etmiştir.Gerbert, öğrenimini Aurlillac Klisesinde tamamlamıştır. Burada edindiği bilgiler sonucu, birçok matematikçinin dikkatini çekti. Sonuçta da, matematik araştırmalarını hızlandırdı. İstinsah faaliyetlerini çoğalttı. Gerbert, hakkında değişik rivayetler vardır. Bu rivayetler hakkında, geniş bilgi, müsteşrik Sigrid Hunke tarafından hazırlanan İslam'ın Güneşi Avrupa'nın üzerinde eserde bulunmaktadır. Bu rivayetlerden birisi şudur :Gerbert, sıfır kavramını bilmiyordu. Mesela 1002 sayısında sıfır 0lmayınca, yazılanların anlaşılması mümkün değildi. Gerbert ve öğrencileri, sıfır hakkında, herhangi bir bilgiye sahip olmadıklarından, yapılanların manasını kavrayamadıkları anlaşılmakta. Gerbert, sayı yazısını, Batı Arapları'ndan getirir. Araplardan, İspanya seyahati sırasında öğrendiği sanılmaktadır.Gençliğinde itibaren, Hindistan'ın bir ucundan öbür ucuna yaptığı bir çok seyahatlerle, Hint dilini ve ilmini tam anlamıyla Öğrenen Gertert'in çağdaşı olan Beyruni'den o sıralarda, Hindistan'da yazılmış harf şekillerinin ve ilk rakam şekillerinin diğer memlekete geçince, değiştiğini öğreniyoruz, Beyrurıi, Araplar'ın, Hintliler'den en elverişli rakamları aldıklarını açıklar. Araplann birbirinden farklılık gösteren iki çeşit , Hint sayı yazısını kullandıklarını, Harezmi de açıklar.Harezmi tarafından, 830 yılında yazılan eserin ilk kopyaları, Viyana Saray Kütüphanesinde bulunmaktadır. Bu elyazmaları (manüskri), 1143 tarihini taşımaktadır. Salen Manastırı'nda bulunan ikinci bir kopya ise, bugün Heilderburg'ta muhafaza edilmektedir.Avrupa, ilim dünyasında sunulan bu önemli belge ile, Araplar'ın, önce birler basamağından başlayarak, rakamları sağdan sola doğru yazıp okuduklarını, bu eserden öğrenir. Harezmi'ye ait bu eserde; toplama ve çıkarma işlemlerine ait örnekler görülmektedir.Latince tercümesinde, bugünkü yazım şekline göre, "0" (sıfır) a ait bir örnek Şöyledir :38-18=20"Sekiz diğer sekizden çıkınca, geriye bir şey kalmaz. Bu takdirde, boş kalmaması için, bir dairecik koy. Dairecik, boş hanenin yerine geçmek zorundadır. Eğer bu hane boş kalırsa, diğer haneleri de tahdit edilmiş olurlar. Artık ikinci hane, birinci hanenin yerini tutar. Yani; ikinci hane, birinci haneden başka bir şey değildir."Bugünkü bilgilerimize göre basit gibi görünen, ancak zamanın matematik görüşü olarak son derece önemli olan bu açıklamanın böyle olması düşünüldüğünde, Harezmi'nin görüşü olan açıklamanın önemi kendiliğinden ortaya çıkar. Şöyle ki; sıfır, ilk basamağın aksine, sola konsaydı, "02" gibi bir sayı elde edilir ki, ikinin solundaki sıfır sonucu değiştirdiğinden, Harezmi'nin matematik görüşünün zamanı matematik bilgileri karşısındaki önemi açık olarak ortaya çıkar.Brahmagupta'nın ,Siddahta adlı eseri, 776 yılında, Saverus'tan 114 yıl sonra, Arapça'ya çevrilen bir eserinin içinde yer almıştır. Gerbert'ten yüz yıl sonra, Harezmi'nin Latince tercümesi, Orta İspanya yoluyla Batı'ya ulaşır.Bu tarihlerde, "Arap Sayı Yazısının", ilim dünyasındaki zaferine çığır açan başka bir şahıs ile karşılaşıyoruz.Pizza'lı Leonardo (1180~ ?) ; matematik bilgisinin, esaslarını bizzat, ilk kaynaklarından, yani Mısır'a yaptığı uzun süreli seyahatler sonucu elde etmiştir. Elde ettiği bilgileri de, Batı'ya öğretmiştir. Leonardo'nun babası, Cezayir sahillerinde ticaret işleri ile meşgul idi. İslam medeniyetinin etkinliğini gören, baba Leonardo, oğlunu yetiştirmek için yanına çağırır. Oğlu Leonardo Hint, yani Arap (İslam) rakamları ile hesap yapmaya hayran kalır. Hint hesap sistemlerinin, her türlü uygulamasını öğrenir. Bu arada, İskenderiye ve Ş*** kütüphanelerinde, eline geçirebildiği ilmi değeri olan eserleri de toplayıp, Avrupa'ya götürdüğü tarihi bir gerçek olarak bilinmektedir.Oğul Leonardo, İslam (Arap) hesap öğretmenlerinden, öğrendiği bütün bilgileri sıfır rakamı dahil olmak üzere, çevresindekilere, uygulamaları ile birlikte öğretirBu rakamlar, Arapçada "sıfır" adı verilen "." işareti ile her türlü hesabın yapılabildiğini açıklar.Matematikte; bugün Türkçe'mizde gösterim şekli olan, "0" (sıfır), Arapça'da gösterim şekli olan "." (sıfır) sembolü ile, Türkçe yazım §ekli olan "sıfırı" ve aynı anlama gelen, diğer Batı dillerinde kullanılan ve "rakam" ve "yazım" şekillerinin tarihi gelişimleri, ayrıntılı olarak incelemeye değer bir konudur.SIFIRIN TARİHİ KRONOLOJİSİM.Ö. 3000 yılları : Eski Mısırlılar, onluk sistemi bilmediklerinden, sıfır anlamını ifade eden bir sembol (işaret) kullanmamışlardır.M.Ö. 700-500 yılları : Mezopotamyalılar, sadece astronomi metinlerinde, sıfır anlamına gelecek, özel bir işareti sürekli olarak kullanmışlardır.M.S. 2. yüzyıl : Eski Yunan'da, Batlamyos'un astronomi metinlerinde, Yunan alfabesinde görülen, içi boş anlamını ifade eden "0" şeklinde bir harf kullanmışlardır. Ancak, matematiklerinde, bu harfi (işareti) kullanmadıklarını, kaynaklar açık olarak belirtmektedir.M.S. 400 yılları : Eski Hint Dünyasında, ilk defa, bugünkü ifadeyle sıfır anlamına gelen, "0" ve "." şeklinde işaret (sembol) görülmeye başlamıştır.M.S. 632 : Eski Hint alimi Brahmagupta'nın astronomi ile ilgili olan Siddhanta adlı eserinde, dokuz ayrı ve sıfır rakamı ile hesap yapmayı gösteren kaideler belirtilmiştir.M.S. 830 : İslam Dünyasının önde gelen matematik alimi Harezmi tarafından, dokuz ayrı rakam dahil sıfır rakamı ile birlikte aritmetik işlemlerin nasıl yapılacağı açık olarak gösterilmiştir.M.S. 1100 yılları : Avrupa matematik dünyasında, yaygın olarak kullanılmaya başlar.(alıntı)